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Summary

We present a new open–source Bayesian wavelet extrac-
tion program for deriving wavelets from seismic and
well–log information. This code is designed to comple-
ment the open–source model–based Bayesian inversion
code Delivery (Gunning and Glinsky; Gunning, 2003),
recently presented at the EAGE meeting in Stavanger.
The Delivery–Extractor program approaches the well–tie
problem from a Bayesian viewpoint, which naturally
integrates prior knowledge about the well tie in the
form of marker constraints, VSP data, phase prejudices,
or plausible interval velocities. The code can perform
simultaneous extractions at multiple (possibly deviated)
wells, for multiple offsets (using a linearised Zoeppritz
reflectivity), and can estimate additional uncertainty
parameters such as time–registration errors for stacks or
well–location errors caused by imaging problems. The
code produces distribution details for the mis–tie, or
noise, amplitude (critical for inversion studies), and can
produce multiple realisations of the extracted wavelets
from the Bayesian posterior, showing the uncertainty in
the wavelet scaling and extent, the time–to–depth map,
and the noise parameters for each stack.

Introduction

Seismic inversions are inescapably and critically depen-
dent on the estimate of the source signature or wavelet.
Though only the most naive characteristics of the reser-
voir geometry are robust to poor estimations of the
wavelet shape, it is not unusual to see expensive and time–
consuming inversion calculations performed using badly
calibrated wavelets. In order to produce the best possi-
ble inversions from Delivery, we felt it was necessary to
write a high quality Bayesian wavelet extraction code to
produce optimal estimations of the wavelet for inversion
studies and other possible applications, using many of the
proven and successful ideas in the Delivery inverter.

A few remarks about our views on wavelet extraction and
inversion are pertinent.

• From a modelling and computational viewpoint,
fully probabilistic Bayesian inversion is possible only
with a relatively simple forward model of wave prop-
agation. For field scale studies, this restricts us to
the traditional convolutional model, which amounts
to modelling primary reflections only, or the ”small
contrast” approximation. It follows then that any
forward modelling parameters (such as the wavelet)
need only be accurate to the same order. Extracting
wavelets using the full Zoeppritz equations for an in-
version program using convolutional models is both

inconsistent and pointless. We use a linearised Zoep-
pritz equation with terms to θ2 in incidence angle

• Experience has consistently shown the well–tie prob-
lem to be ’data–poor’, i.e. there are usually not
many independent data points compared to the num-
ber of parameters we wish to estimate. Extractions
must usually be confined to a window of about 0.5
seconds or less (to avoid modelling across significant
dispersion), yielding usually O(100) data points or
fewer, and the sum total of the parameters to be
estimated is often many tens. This means that esti-
mates of the wavelet shape are often very prone to
be ’overfitted’ by very flexible models. This makes
the hypothesis and modelling of ’spatially–varying’
wavelets between wells very statistically dubious,
and highly vulnerable to overfitting. Transverse vari-
ations in wavelet character do occur, and for good
reasons, but it is extremely difficult to model (and
interpolate) such variations in ways that are statisti-
cally defendable. We feel it is safer to work with the
hypothesis of spatial stationarity and possibly exag-
gerate the estimate of the noise strength, since this
will prevent the driving of subsequent inversions into
overfitting by a misleadingly aggressive S/N ratio.

• The length of the wavelet is never known a–priori,
and it is desirable for this quantity (or its dis-
tribution) to be estimated using some canonical
modern approach like Bayesian Model Selection
(BMS) (Denison et al., 2002). In practice, this will
involve computing well–ties for all possible wavelet
lengths and ordering them using Bayes factors. The
most likely wavelet from the BMS calculation will
be a sensible compromise between over and under
fitting.

Our approach to wavelet extraction has much in common
with the work of Buland and Omre (2003). We incorpo-
rate the additional (and significant) uncertainty of the
wavelet span, time registration errors, well positioning
errors, AVO related tweaks to the reflectivity equation,
and additional constraints on wavelet phase and interval–
velocity errors.

Parameters of the problem

The basic problem in wavelet extraction is to find a
wavelet whose time–convolution with the reflection
coefficients computed from well log data yields a good
match to the stacked migrated seismic data at the well
location. This leads to a non–linear regression problem
for a set of parameters m comprising (a) the coefficients
describing the wavelet plus (b) any free parameters that
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contribute to the mapping of the well–log data in depth
to the time axis. Usually the time–to–depth mapping
(e.g. a piecewise linear curve) is roughly established from
a VSP or set of stacking/migration velocities, and local
’stretch–or–squeeze’ adjustments ∆t are applied at the
curve ’knot’ points (checkshots or markers) to improve
the well tie. A global time–offset parameter is often
useful here too. Also (c) certain parameters describing
uncertainty in the well placement in space or the regis-
tration of the seismic in time may be included. There
are several constraints in the regression, including (1)
the range of permissible adjustments to the time–depth
map ought to be constrained by sonic log information
(’plausible interval velocities’). (2) It may be desired to
constrain the wavelet phase for reasons to do with the
processing.

The Bayesian approach to this regression problem is to
regard the ’best’ wavelet as a subvector of the maximum
aposteriori (MAP) point of the posterior distribution for
m, given the ’data’ D:

Π(m|D) = p(m)Lmistie(m|D)Linterval-velocities(m|D)

×Lphase(m). (1)

Here p(m) is the prior distribution of the model parame-
ters, Lmistie(m|D) is a likelihood function which expresses
the likelihood of the model in terms of the well–tie seis-
mic mismatch, Linterval-velocities(m|D) expresses the like-
lihood of the model in terms of the deviations of the inter-
val velocities from comparable ones derived from the well
log, and Lphase(m) is a likelihood enforcing any phase
constraints desired on the wavelet. We briefly describe
each of these terms.

The wavelet w is parameterised in terms of a set of sam-
ples mw,i, i = −M . . . N , spaced at the Nyquist rate
associated with the seismic band edge (typically about
δt = 1/(4fpeak)). The samples for the wavelet at the
seismic data rate (e.g. 2,4 ms) are generated by cu-
bic splines with zero-derivative endpoint conditions. See
fig. 1. We use a generously wide Gaussian of mean zero
for the Bayesian prior of mw,i. Note there are fewer fun-
damental parameters than seismic samples. This parame-
terisation enforces sensible bandwidth constraints and the
necessary tapering. Cubic splines are a linear mapping,
so the coefficients at the seismic sampling scale are re-
lated to the underlying coefficients mw linearly, and the
two indices M, N then define an set of wavelet models.

The stretch–and–squeeze parameters are modelled as hav-
ing independent Gaussian priors N(0, σij), for knot point
j on well i, and typically set to a few ms. A global shift
of the well registration can be modelled, as well as trans-
verse shifts in space. These parameters have reasonable
zero–mean Gaussian priors too.

The Lmistie(m|D) likelihood for the seismic mistie has the
form

−2 log(Lmistie)

∼
∑

wells i, stacks k

{

(Sik−ri(m)∗w(m))2

σ2

k

+ (ni + 1) log(σk)
}

1
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Fig. 1: (a) Parameterisation of wavelet in term of coefficients at
Nyquist spacing associated with band edge (black boxes), and
resulting coefficients generated at the seismic time-sampling
rate (circles) by cubic interpolation. (b) Parameterisation of
the time to depth map using stretch–and–squeeze points, usu-
ally placed at geological markers.

where S is the seismic data and n is the number of mistie
evaluations in the well–tie interval. The reflectivity r is
computed from automatically–blocked density and sonic
logs using Backus averaging and the linearised Zoeppritz
equation appropriate for the stack angle of each stack.

Tweaks in the stretch–and–squeeze parameters will
change the effective interval velocities in the time to depth
map. The Linterval-velocities(m|D) likelihood is a Gaus-
sian model that enforces the need for these interval ve-
locities to be within some reasonable (say 5% std. devi-
ation) of the upscaled sonic log interval velocities. Simi-
larly, the phase–constraint likelihood Lphase(m) can en-
force common requirements such as a constant, or zero
phase wavelet, by suitable penalties on the phase spec-
trum corresponding to the wavelet embedded in m.

Since the forward model is a trivial convolution, the MAP
point can be found a using standard quasi–Newton opti-
miser and the uncertainty in all the parameters is found
by computing the covariance of a Gaussian approximation
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to the posterior at this point. This almost always provides
a very good approximation to the posterior distribution
of the parameters, for a given wavelet span. The Bayes
factor for each possible wavelet span is computed using
the Laplace approximation (Raftery, 1996). This then
produces the marginal probability of each wavelet span,
which can be used to generate stochastic samples of the
wavelet span on top of the intrinsic wavelet uncertainty.

The code will produce MAP estimates of the wavelet and
other parameters, MAP well–synthetics, interval veloc-
ities, error–bars, posterior cross–sections and a host of
diagnostics. Stochastic realisations of all the parameters
can be generated.

Tests

The code has been tested successfully on a number of
simple synthetic test cases to check the wavelet–span
detection algorithms. It has been applied to several field
cases with fixed time–to–depth maps and successfully
reproduced wavelets from two standard commercial
packages. The additional freedom in the time–to–depth
maps has led to significantly better ties that are still
guaranteed to remain consistent with log data.

A simple example is illustrated in figure 2, which shows
the density, and sonic logs registered against the seismic
and synthetic. An additional trace shows the effective
sonic log corresponding to the interval velocities, with the
marker points clearly evident. This is one pane of a mul-
tiwell tie, the other corresponding to a sidetrack from the
same well location.

Fig. 2: Typical well–tie diagnostic output

The extracted wavelet from this tie is significantly shorter
than that obtained from the commercial packages (see
figure 3). Experience has shown this to be generic be-
haviour: much of the precursor and coda energy in stan-
dard wavelet derivations is not statistically significant,
and can be legitimately truncated.

Fig. 3: Extracted wavelet (green) compared to standard com-
mercial extraction (red). The wavelets found using Bayesian
model selection are generally much shorter.

The code

The code is written in java, and uses highly efficient
public domain libraries for the computationally heavy
FFT, optimization, and linear algebra work. It is plat-
form independent and driven by a simple XML file, and
a simple GUI is provided for visualizing the maximum
likelihood output. Outputs are compatible with Seismic
Unix, Delivery, and the INT viewer.

The code comes bundled with the Delivery inverter, form
CSIRO Petroleum’s main website (Gunning, 2003).

Conclusions

• This wavelet extraction code is a major contribution
to the repertoire of open–source tools for the geo-
physical community. It is capable of multi–stack,
multiple–well and deviated well wavelet derivations.
It features a fully integrated Bayesian approach to
the coupled uncertainties in wavelet estimation, the
time–to–depth map, vertical ans transverse registra-
tion errors, and noise estimation.

• Workers involved in inversion studies should have a
particular interest in this code, as it provides max-
imum likelihood estimates of the both the wavelet
and the noise level. Optimum estimates of the pre-
cursor and coda times are also invaluable for the
purposes of building reservoir–centered layer–based
models such as those used by Delivery.

• The community is welcome to download the
code (Gunning, 2003) and trial it. Suggestions, bug
reports and contributed improvements within the
scope of the documented open–source agreement are
welcome.



Delivery–Extractor: A new open-source wavelet extraction program

Acknowledgements

James Gunning would like to thank the BHP–Billiton
quantitative interpretation project for funding.

References

Buland, A. and Omre, H. Bayesian wavelet estimation
from seismic and well data. Geophysics, 68(6):2000–
2009, 2003.

Denison, D. G. T. et al. Bayesian Methods for Nonlinear
Classification and Regression. Wiley, 2002.

Gunning, J. Delivery website: follow links from http:
//www.petroleum.csiro.au. 2003.

Gunning, J. and Glinsky, M. Delivery: an open–
source model–based Bayesian seismic inversion pro-
gram. ’Computers and Geosciences’, in press.

Raftery, A. E. Hypothesis testing and model selection. In
Markov Chain Monte Carlo in Practice. Chapman and
Hall, 1996.


