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There is a rich history of using differential measurements to improve the signal to noise 

ratio when there is correlated signal.  With respect to seismic amplitude measurements, 

this is done in a practical sense by comparing the amplitude of reflections on structure to 

those off structure, or by comparing anomalous amplitudes to an average background.  In 

fact, anomalous is defined in reference to the background.  While this is intuitively the 

thing to do, the value of this methodology needs to be calculated by the quantitative 

effect on risk and uncertainty and the interaction of this effect with business decisions.  It 

is only by influencing the business decisions with the information that value is realized. 

 

We will explore this topic by first giving an introduction to differential measurements 

and giving a familiar example (telling day from night by the temperature).  The 

hypothesis of how this can be extended into quantitative seismic amplitude analysis will 

be presented.  A successful, calibrated Bayesian framework for how observed amplitude 

response can be transformed into risk will be explained.  This is a prerequisite for 

calculating the value of using relative amplitude changes.  A further Bayesian 

methodology that incorporates the correlation into a model based inversion will be used 

to quantify the estimation of the volumetric uncertainty.  Finally the value of this 

technology will be estimated on a typical exploration example in an undrilled area. A 

significantly larger value will be shown in a competitive bidding situation against a party 

without this superior methodology. 

 

Concept of differential measurements.  Differential measurements have been used in 

many disciplines to improve the signal to noise ratio when a correlation in the signal 

exists.  Recent publicity of the positive drug test of Floyd Landis in the Tour de France 

highlighted a use of differential measurements in the medical field.  Although the amount 

of testosterone can vary widely in a human being, the ratio of the amount of testosterone 
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to epitestoterone is highly correlated.  Therefore an elevated T/E ratio is used as evidence 

of an artificial enhancement of testosterone to improve one’s athletic performance.  In a 

Bayesian context there is a greater separation in the expected range of T/E given that 

there has or has not been artificial enhancement, than there is in the amount of 

testosterone.  This allows one to have a greater probability of a person artificially 

enhancing his testosterone level given an elevated T/E ratio, in comparison to an elevated 

testosterone level. 

 

There are also several very useful applications of differential measurements in the 

electronics field.  They range from low voltage differential signaling (i.e., gigabit 

Ethernet), to USB communication protocols, to high voltage differential signaling in 

SCSI-1 equipment. 

 

An earth science example that we will explore in some detail is the ability to tell day 

from night using temperature.  Figure 1 shows the daytime and nighttime temperature for 

Livermore California every 24 hours for the year 2005.  When the distribution of daytime 

and nighttime temperatures are examined in Fig. 2a there is a very large overlap.  The 

standard deviation is about 7 °C while the separation in the mean of the two distributions 

is only 4.5 °C.  By examining the relative change in temperature over a 12 hour period 

(daytime) and a 24 hour period (nighttime), there is a much larger relative separation in 

the distributions (Fig. 2b).  While the separation in the mean of the distributions remains 

4.5 °C, the width of the distribution is decreased by almost a factor of 2 to 4 °C.  This has 

a profound effect on the ability to tell daytime from nighttime.  Using a Bayesian analysis 

where the probability of it being daytime is 50% and assuming that there is an 

observation of either the most likely daytime temperature or 12 hour change in 

temperature, Fig. 3 shows the advantage of using the relative temperature change.  Given 

only the observation of the temperature the probability that it is daytime in only 55%, a 

boost in the probability of 10%.  The observation of the temperature change increases the 

probability that it is daytime to 71%, a boost in the probability of 42%.  Obviously the 

use of the differential temperature measurement increases the predictability because of 

the short time (daily) correlation in temperature. 

 

The differential measurement that is the subject of this paper is the local change in 

seismic reflection amplitude between the updip portion of a potential hydrocarbon trap 

and the downdip portion of the same trap (see Fig. 4).  In an exploration situation where 



 - 3 - - 

Glinsky et al.  Value of using relative amplitude changes 

one only has petrophysical information on the rock physics from wells 100 km away 

from the potential hydocarbon trap, it is not unusual to have an uncertainty in the 

compressional velocity of the end member sands and shales of 200 m/s.  If one were to 

drill a downdip well in the potential hydrocarbon trap, derive the compressional velocity 

of the end members from that well, it would not be uncommon to have an uncertainty of 

only 70 m/s in predicting the updip end member velocities (over a distance of less than 3 

km).  The larger variation of the regional prediction is analogous to the seasonal 

fluctuation of temperatures in the previous example, while the smaller variation within 

the potential hydrocarbon trap is analogous to the daily variation in the temperature.  The 

local correlation in the petrophysical properties should allow a better prediction of the 

presence of hydrocarbons using the local change in seismic reflection amplitude than 

using the absolute seismic reflection amplitude.  The remainder of this paper will 

quantify the improvement in the prediction, and its business value. 

 

Bayesian risk determination.  In order to quantify the effect of the relative amplitudes 

on the risk and thereby the value of hydrocarbon prospects, this information must be put 

in the context of an integrated and calibrated risking system.  The methodology that we 

choose to use is Bayesian based.   

 

It assumes that there are several distinct classes that need to be distinguished.  Within the 

context of this paper, it is assumed that there are only three classes: shale only (no 

reservoir), reservoir with brine sand surrounded by shale, and reservoir with hydrocarbon 

(oil).  The prior probabilities of these classes are determined by standard geologic risking 

based on reservoir presence, existence of a trapping configuration, sufficient sealing 

capability of the trap, and the likelihood of charge (source, migration, and timing).  

Additional factors such as the probability of biodegradation and the likelihood of oil 

versus gas are considered, as needed.   

 

Utilizing knowledge of the petrophysical properties of the end member sands and shales 

(density, compressional velocity, and shear velocity) along with the properties of the 

fluids and the N/G of the sands, a range of possible amplitude responses are generated for 

each class.  The uncertainty of all the input properties obviously needs to be known in 

order to do this.  Given the observed amplitude response of the seismic data, the 

probability of hydrocarbon along with the most likely volumetrics can be estimated.  

More details can be found in both Duncan et al. 2004 and Glinsky et al. 2005.   
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Two additional factors need to be taken into account before the risk can be determined.  

The first is the confidence in the seismic and petrophysical data.  If this data is 

fundamentally flawed so that the amplitudes cannot be trusted one should ignore the 

seismic information.  We estimate the probability of this happening by a deterministic 

formula based on answers to qualitative questions relating to data quality.  This 

confidence is then used to discount the Bayesian update to the probabilities due to the 

observation of the amplitudes.  The final factor is the fit to structure of the amplitudes, 

that is, whether gravity is at work on the segregation of the brine and hydrocarbons.  This 

is incorporated as an additional Bayesian update based on the quality of the structural fit.  

We refer you to Glinsky et al. 2004 for more details on this process.  The final result is 

shown as the update to the “wheel of fortune” similar to Fig. 3. 

 

The most important part of this process is the calibration of the results.  Over the period 

of 2000 to 2005 this methodology was applied before 22 wells were drilled.  The 

expected number of successes ranged from 9 to 16 with a most likely value of 12.5.  

There were 12 successes, indicating that the method is well calibrated (see Fig. 5). 

 

Addition of correlation to modeling.  In order to study the effect of the correlation in 

the seismic reflection amplitude on the risk and uncertainty, the Bayesian model based 

inversion program DELIVERY (Gunning and Glinsky 2004) was modified to include this 

correlation.  Instead of correlating the properties at different locations, the problem was 

simplified by correlating the properties of different layers in the model.  For example, 

look at Fig. 6.  It shows the net to gross sand property for the prototype model that will be 

examined extensively in this paper.  The upper sand layer is a surrogate for the updip 

location, and the lower sand layer is a surrogate for the downdip sand location.  The 

middle shale layer is actually made up of three layers.  This is done to allow the shale on 

top of the downdip sand to be different than the shale below the updip sand.  The 

reflection of the shale between these two shales is ignored by the inversion.   

 

As is customary in DELIVERY, the properties of the end members are specified with 

uncertainty.  What has been added for this study is a correlation between equivalent 

layers, for instance the updip to the downdip sand and the shale on top of the updip sand 

to the shale on top of the downdip sand.  The specific relationships that were used for this 

study are for sands: 
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 V
p
= 1564 + 0.9804 D ± (210,75 m/s)  (1) 

 ! = 0.6530 "1.33#10"4
V
p
± (0.05,0.015)  (2) 

 V
s
= !1016 + 0.8454 V

p
± (122,61m/s)  (3) 

and for shales: 

 V
p
= 1329 + 0.9448 D ± (192,76 m/s)  (4) 

 ! = 0.2038 V
p

0.3120
± (0.04 / 0.015)  (5) 

 V
s
= !627 + 0.7027 V

p
± (122,61m/s)  (6) 

where Vp  is the compressional velocity (in m/s), V
s
 is the shear velocity (in m/s), !  is 

the porosity, !  is the density (in g/cc), and D  is the depth below the sea floor (in m).  

The numbers in parentheses are the uncertainties (standard deviations).  The first number 

is the regional uncertainty, while the second number is the local uncertainty within the 

potential hydrocarbon trap.  The depth, D , assumed for the study is 2000 m.  We have 

also introduced a correlation in the gross thickness of the sand, 30 ± (18 m,5 m) ,and in 

the ratio of the net to the gross thickness, N /G = 60% ± (30%,10%) .  The underlying 

model that we use to generate the synthetic seismic response will have a N/G of 80% and 

a gross thickness of 32.6 m.  All of the end member rock properties will be their most 

likely values, which give a porosity for the sand of 18.2%.  The uncertainty in N/G 

around the most likely value of 80% will be (15%,7.5%).  The prior distributions for both 

the N/G and gross thickness input to the model based inversion have been chosen to 

cover both the actual values and a value of 0.  The fluid properties are assumed to be 

1640 m/s and 1.00 g/cc for the brine, and 940 m/s and 0.63 g/cc for the 100% oil.  The 

water saturation for the oil is assumed to be 30%. 

 

The reduced standard deviation of the difference of two properties that 

are physically proximate occurs because of two effects. The  first is that the "univariate" 

standard deviation obtained from a regional or basin-wide trend will be derived from data 

that is often a mixture of subpopulations, e.g. mixed depositional environments, varied 

grain characteristics, variations in source sediment etc, which make the overall  

population variance large. The updip-downdip comparison will be applied at two 

locations sufficiently close to be described by only one of the subpopulations that 

comprise the regional trend, and the associated within-group variance is much reduced.  

Secondly, any "random" spatial process for one of the subpopulations will have some 

characteristic transverse correlation length, and the difference of values measured well 

within this correlation length has a standard deviation less than that of the subgroup 

(Deutsch 2002). The first effect in particular can be dramatic, and can lead to factors of 2 
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or 3 in the ratio of standard deviations.  There have been some interesting studies of the 

second effect by Eidsvik et al. 2004 and Buland et al. 2003.  

 

The effect of the correlation can be seen in Fig. 7 which shows the compressional 

velocity of the updip mixing shale cross plotted against the compressional velocity of the 

downdip mixing shale.  Note that the spread of the values along either axis is about 200 

m/s while the spread along the diagonal from the upper left hand corner to the lower right 

hand corner (the direction that corresponds to the difference between the two velocities) 

is less than half.  This is the expression of the correlation of the updip to downdip rock 

properties. 

 

Results of the modeling with correlation.  We will study two cases to understand the 

effect of the rock physics correlation and differential measurements on the risk and 

volumetric uncertainty estimation.  The first is the basic situation of the reflection off of 

the interface between the two infinite half spaces, consisting of a shale overlying a 

laminated sand-shale mixture.  This will be modeled by examining the reflection 

coefficients of the model shown in Fig. 6.  Three cases are analyzed.  The first is where 

the sand has 0% N/G (shale).  The second is where there is a N /G = 80% ± (15%,7.5%)  

brine sand both updip and downdip.  The third is the same as the second model except 

with oil updip and brine downdip.   

 

The distributions of the reflection coefficients of the updip “sands” are shown in Fig. 8a.  

In contrast, the distributions of the differential reflection coefficients (top of the updip 

“sands” less the top of the downdip “sands”) are shown in Fig. 8b.  The feature to note is 

the better separation of the peaks using the differential reflection coefficients, analogous 

to what we found with the temperature example.  The consequence of this separation is a 

better ability to identify the presense of hydrocarbons, in other words, risk reduction.  

This is demonstrated by Fig. 9 which shows the effect of observing the most likely 

seismic amplitude response for an oil sand (third situation modeled) on the risk, starting 

from equal probabilities for the three situations (shale, brine, and oil).  The probability of 

oil is only increased from 34% to 47% by the absolute updip amplitude – a relative 

increase in probability of 41%.  This same probability is increased to 90% from 34% 

using the differential seismic amplitude change – a relative increase in probability of 

170%. 
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To better understand what is causing the tighter distribution in the differential amplitudes 

and hence the reduction in risk, examine Fig. 10a.  It divides the brine peak of Fig. 8a 

(downdip sand) into two halves – a sand that is softer than the bounding shale and a shale 

that is harder than the bounding shale.  The reflection coefficients of the updip sand are 

then calculated corresponding to the two populations of the downdip sand.  Because of 

the rock property correlation the soft downdip brine sand corresponds to the very soft 

updip oil sand (see Fig. 10b).  The hard downdip brine sand corresponds to a mildly soft 

updip oil sand.  When the two distributions for the updip oil sand are added together one 

gets the broader distribution corresponding to the distribution of the absolute amplitude 

of the oil sand shown in Fig. 8a. 

 

The second case that we will study is the more general case of a three layer model that 

has seismic interference between the top and the base sand reflector.  This will allow us 

to study the effect of the tuning and the ability to reduce the uncertainty in both the net 

and gross thicknesses.  The importance of  estimating the range of net sand uncertainty 

comes from its direct relationship to the volume of hydrocarbon.  There are five 

prototype situations that we will examine which are all shown in Fig. 11.  They range 

from the expected response for a oil sand updip and a brine sand downdip to the expected 

response for shale.  The most common cases that we tend to risk are case B (a reasonable 

amplitude change with a mappable downdip sand) and case D (a mappable updip and 

downdip sand with little change in amplitude as one moves downdip).  A common excuse 

for the lack of amplitudes when case D is observed is that the low porosity of the sands 

(18%) is not large enough to see a hydrocarbon effect.  We will show that the situation is 

much more pessimistic than this conventional wisdom would suggest.  A significant 

portion of the pessimism will come from the analysis of the differential amplitude.  A 25 

Hz ricker wavelet was used to generate the synthetics.  The noise level (standard 

deviation) is assumed to be about one third the size of the reflection in case D. 

 

A Bayesian model based inversion is done that adjusts the model parameters so that the 

synthetic of the model matches the seismic to within the estimated noise level.  This is 

demonstrated by Fig. 12 that shows the synthetic seismic of the ensemble of models 

before, then after inversion.  The consequence of doing the inversion on the primary 

parameters (fluid type and NG) of the model is shown in Fig. 13.  Note that the net sand, 

as well as the oil probability decreases going from case A to case E.  The quantitative 

effect on the net sand distribution in shown in Fig. 14.   
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In order to calculate the effect on the “wheel of fortune”, the fluid probabilities, we have 

assumed a seismic confidence factor of 68% – a typical number for well processed 3D 

seismic data.  This means that 32% of the time there is a significant flaw in the data (or 

there is a scenario that has not been taken into account) and the seismic amplitudes 

should be ignored.  For cases A to C, we assume that there is a structural change in the 

amplitudes consistent with a gravity effect on the less dense hydrocarbon.  A further 

Bayesian boost consistent with increasing a 50% probability of hydrocarbon to 60% is 

applied.  For cases D and E, the opposite is assumed and a Bayesian boost of 40% is 

applied.  The resulting changes to the “wheels of fortune” can be seen in Fig. 15.  The 

change to the oil probability ranges from an increase of 100% to a decrease of 70%.  

Detailed sensitivity analysis shows that the fluid probabilities along with the net sand are 

most sensitive to the seismic response, followed by the N/G, then the acoustic impedance 

of the bounding shale.  Surprisingly little sensitivity is shown to the porosity of the sand. 

 

Business value of using relative amplitudes.  We will examine two ways that the 

differential seismic amplitude measurements can lead to business value.  The first is the 

simple situation of assuming that one has the option to drill a prospective hydrocarbon 

resource and an option to do the relative amplitude analysis (one already has the 

conventional absolute amplitude analysis).  The question that we need to the answer is 

the value of doing the more reliable relative amplitude analysis.  The second situation is a 

more complicated one of two parties bidding against one another for the option to drill 

the prospective hydrocarbon resource.  One party does not have the better analysis and 

the other party does.  The party with the better analysis knows that that the other party 

does not have the analysis, while the party without the better analysis does not know that 

the other party does.  While there is significant value in both cases, we will find that the 

value in the second is more than twice as much. 

 

Let us outline our assumptions.  The cost of doing the better analysis is $100,000.  The 

cost of drilling the well to test the opportunity is $100 million.  Without any of the 

seismic amplitude information, the chance of a hydrocarbon resource being economic is 

50%.  Given that the hydrocarbon resource would be economic, the probability that the 

more reliable relative amplitude information would have a positive indication is 85%.  

Without the relative amplitude information (that is, with only the absolute information), 

this probability would only be 67%.  Negative information would be equally pessimistic, 
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with probabilities of 16% and 29% respectively.  We also assume a 50% correlation 

between the less reliable and more reliable information (this will be needed for the 

competitive bidding situation).  These reliabilities were determined by the size of the 

Bayesian update to the oil probability given in the last section (cases B and D).   

 

Another important difference between the two types of information is the difference in 

their estimation of the net sand.  The more reliable relative information will estimate 

more net sand given the more positive amplitude information than the less reliable 

information.  The converse will be true when there is negative information – the more 

reliable information will indicate less sand.  Again using the results of the last section, the 

value of the opportunity given positive reliable information and a positive drilling result 

would be $700 million, with negative reliable information it would be only $400 million.  

Given less reliable information the value would be $600 million and $500 million 

(respectively for the case of positive and negative less reliable information).  We assume, 

in the competitive bidding situation, that the bidder with the less reliable information will 

bid 50% of the naive ENPV (that is assuming there is no bias to his winning the bid 

caused by the party with the more reliable information).  The bidder with the more 

reliable information will bid 100% of the naive ENPV of the bidder with less reliable 

information. 

 

Using a standard decision tree based, value of information methodology (Bickel et al. 

2006) it can be shown that the value of the better information is $60 million for the first 

situation.  This decision tree consists of two decisions and two uncertainties.  The first 

decision is choosing the type of data, followed by the uncertainty of what that data will 

indicate.  Based on that data the decision will then need to be made whether to drill the 

prospect, followed by the uncertainty of whether the well is an economic discovery. 

 

The value of the information in the second situation, competitive bidding, is $130 

million.  It makes the difference between losing $50 million if one bids without the more 

reliable information to making $80 million if one bids with the more reliable information.  

This is a classic case of “winner’s curse”, where the person with the less reliable 

information only wins the bid if the more reliable information indicates that it is not 

likely to be successful, and that if it is successful it will not have as much value.  This 

analysis consists of two decision trees – one for each of the two bidders.  Both trees have 

three uncertainties and one decision.  The first uncertainty is what the data will indicate.  
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This is followed by the decision of whether to bid or not.  The last two uncertainties are 

whether or not the bid is the winning bid and, if it is, whether the well is an economic 

discovery. 

 

A further analysis of the competitive bidding situation highlights an interesting effect of 

having two parties bidding based on information with different reliability – the entity 

receiving the proceeds of the bidding with have a larger expected return.  The expected 

return for the case above is $192 million.  If both parties would have the reliable 

information, the expected return would be reduced 15% to $162 million. 

 

Conclusions.  The use of relative seismic amplitudes has significant advantages.  It 

mitigates the risk of not finding hydrocarbons, and has a significant influence on the 

uncertainty of the net sand (thereby the NPV of the project, if hydrocarbons are found).  

For the case that we examined there was little sensitivity to the porosity and only mild 

sensitivity to the N/G.  This can be specific to the situation and the sensitivities should 

always be modeled for the case of interest.  Finally there is significant value to the 

application of this methodology, in the tens of millions of dollars per application.  The 

value is amplified in competitive bidding situations. 

 

Suggested Reading.  “Lithology and fluid prediction in lightly explored basins” by 

Duncan et al. (ASEG, Expanded Abstracts, 2004), “Integration of uncertain subsurface 

information into multiple reservoir simulation models” by Glinsky et al. (The Leading 

Edge 24:990-998, 2005), “Application of integrated risking on a South African prospect” 

by Glinsky et al. (EAGE, Expanded Abstracts, 2004), “Delivery: an open source model-

based Bayesian seismic inversion program” by Gunning and Glinsky (Computers and 

Geosciences 30:619-636, 2004), “Geostatistical Reservoir Modelling” by Deutsch 

(Oxford University Press, p. 376, 2002), “Stochastic reservoir characterization using 

prestack seismic data” by Eidsvik et al. (Geophysics 69:978-993, 2004), “Rapid spatially 

coupled AVO” by Buland et al. (Geophysics 68:824-883, 2003), “Quantifying 3D land 

seismic reliability and value”, by Bickel et al. (SPE Annual Technical Conference, 2006) 
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Figure 1.  Plot of the daytime and nighttime temperatures for Livermore, California 

during the year 2005.  The daytime temperature is taken at 4 PM local time.  The 

nighttime temperature at 4 AM local time.  Data courtesy of NOAA Satellite and 

Information Service, National Climatic Data Center. 

 

Figure 2.  (a) Distribution of daytime and nighttime temperatures.  The mean and 

standard deviation are shown for each distribution.  (b) Distribution of the difference in 

temperature going from night to the next day, and from one night to the next night. 

 

Figure 3.  (a) The probability of day and night given the observation of the mean daytime 

temperature.  The prior probabilities are assumed to be equal for day and night.  The 

boost is the probability of day given the observation divided by the prior probability of 

day.  (b) The probability of day and night given the observation of the mean difference 

between night and day. 

 

Figure 4.  Cartoon showing context of petrophysical correlation.  The small uncertainty 

over a drilled field is shown on the left.  There is a larger uncertainty going to a undrilled 

field many kilometers away.  Although the petrophysical properties at that location are 

quite uncertain the properties downdip should be similar to the updip properties. 

 

Figure 5.  Calibration of risking.  Black curve is the Poisson distribution of the expected 

number of wells that should encounter hydrocarbons.  This was for the 22 wells drilled by 

BHP Billiton between 2000 and 2005 that had a amplitude response that could be 

analyzed.  The black arrow shows the actual number of  wells which encountered 

hydrocarbons, 12. 

 

Figure 6.  The seven layer model used in the analysis.  Displayed is the N/G of those 

layers, colored according to N/G.  The top three layers are correlated to the corresponding 

bottom three layers.  The upper sand is a surrogate for the sand at the updip location.  The 

lower sand is a surrogate for the sand at the downdip location. 

 

Figure 7.  Demonstration of the correlation in the rock properties.  Shown is the 

compressional velocity of the mixing shale used in the two sand layers.  While there is a 
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large scatter along either axis, there is a much smaller scatter along the direction 

indicating the difference between the two properties. 

 

Figure 8.  (a)  Distribution of reflection coefficients of the top of  the upper sand given 

that the fluid in the pore space is brine or oil.  The third case is if there is no sand in the 

potential reservoir interval.  The reflection in this case is caused by a different type of 

shale. (b)  Distribution of the change in reflection coefficients going from the top of the 

downdip sand to the top of the updip sand. 

 

Figure 9.   The effect of observing the mean oil response on the probabilities of each of 

the three cases:  (a) equal prior probabilities before consideration of the seismic 

amplitude response, (b)  the result of consideration of the absolute amplitude of the upper 

sand,  (c) the result of consideration of relative downdip to updip change in amplitude 

response.  The boost is the ratio of the oil probability after consideration of the amplitude 

response to the prior probability of oil. 

 

Figure 10.  Demonstration of effect of correlation on segregation of updip oil reflection 

strength.  (a) Division of downdip brine sand amplitude response into two parts: A, soft 

brine sands, and B, hard brine sands. (b) The segregation of the reflection coefficients of 

the correlated updip oil sand.  The composite distribution is the same as shown in Fig. 8a, 

but is made up of two distributions:  one associated with the soft downdip brine sands 

that is acoustically very soft, and another associated with the a hard downdip brine sands 

that is nearly transparent on average. 

 

Figure 11.  Characteristic downdip to updip seismic responses whose implication on risk 

and volumetric uncertainty is analyzed via a Bayesian model based inversion.  The 

seismic trace is shown as the wiggle with the positive values colored black.  They are 

zero phase with a negative indicating a reflection from a transition into an acoustically 

softer rock.  The N/G of the model is shown as the color behind the seismic wiggles.  

Shown are five cases:  (A) strong updip reflector with the expected structural change to a 

transparent downdip brine sand reflector, (B) strong updip reflector with a possible 

change to a modest soft downdip brine sand reflector, (C) modest updip reflector with 

possible change to a transparent downdip brine sand reflector, (D)  modest updip and 

downdip reflector with no structural change, (E) weak updip and downdip reflectors with 

no structural change. 
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Figure 12.  The result of the Bayesian model based inversion on the ensemble of 

synthetic seismic of the models.  The “observed seismic” is shown as the thick red trace.  

It corresponds to case A.   The thin multicolored traces are the synthetic seismic of the 

ensemble of models.  (a) Before taking the observed seismic into account.  (b) After 

making the models consistent with the observed seismic to within the noise level. 

 

Figure 13.  Ensemble of models.  On the top are the N/G of the models and on the bottom 

are the fluids in the sand.  Shown is the ensemble prior to making it consistent with the 

observed seismic, next to the ensembles made consistent with each of the observed 

seismic cases shown in Fig. 11. 

 

Figure 14.  The cumulative distribution function of the net sand (N/G times gross sand 

thickness) for each of the cases shown in Fig. 11.  Also shown is the cumulative 

distribution prior to making it consistent with the observed seismic. 

 

Figure 15.  The “wheel of fortunes” for each of the cases shown in Fig. 11, along with the 

one prior to taking the observed seismic into account. 
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Figure 1.
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