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Overview
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Integration of multi scale data
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Methods



Bayesian Inference

Prior
A P([‘}|td ) P (t|d ‘;
s Uyl Ck
P (t|H,dy) = P (H|dy,)

X
Normalizing constant

e Prior from variogram and nearby data d,,
e Likelihood from seismic mismatch

e Get the posterior by sampling many t

¢ Normalizing constant can be ignored

27 Sep 2006 SPE 103268 -- Kalla, White, Gunning, and Glinsky 6



Truncated Gaussian Likelihood and Posterior
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Handling Pinchouts

Pinching out t, posterior
distribution

-2 -1 0 1 2 3
t, layer thickness

e A Gaussian model is efficient and simple, but some of
the proxies are negative

e For building geomodels set the thicknesses with
negative proxies to zero
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Truncated Gaussian Markov Chain Monte Carlo
(TG-MCMC)

e Define auxiliary variable u,= {0, 1} as indicator of
truncation, 1 for ¢,> 0
e Treats “configurational stiffness”

e Plausible truncations by Gibbs sampling

e Metropolis transition probability for t includes thickness
and auxiliary terms

7 (t'|H.d; A_ m(ug|th
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e Equivalent to sampling from the posterior
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Assumptions and Performance

e Layer thicknesses are vertically uncorrelated at each
trace

e Lateral correlations are identical for all layers
e Toeplitz form for resolution matrix

1 1 1 1
(w+a & =)
't “H H ]
1 1 1 {!
G: 7h Tt 7 7H
1 1 1 '
\ = - gt
0'7_[ O'H gy O'H

e Efficient Toeplitz solver
e Handles layer drop-outs or drop-ins without refactoring
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Sequential TG-MCMC

Generate Path

Krige means and
variances for all layers at
a trace

Propose u;' given ¢
using Gibbs

until
convergence

Propose step At from N(0,C.) by
At=L .w and accept t'=t+ At
by Metropolis criterion

Draw a realization from the
simulated posterior and
add to the existing data
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2D Examples



A Simple Two Layer Case

Welll Trace Well2
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A Simple Two layer Case
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A Simple Two layer Case
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e Bayes reconciles seismic and well/continuity data
- Posterior covariance weights each data type appropriately

e Simulation retrieves the complete distribution, not just
the most likely combination

Spatial mismatch ;
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Pinching Layer with Tight Sum Constraint
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Prior sum not equal to Constraint
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3D Examples



3D Problem : Trends

(a) Trend in seismic thickness, H (b) Trend in seismic noise oy;
same H trend as (a)

Simulations on a 100 x 100 x 10 cornerpoint grids with
25 conditioning data
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3D Problem :Different Ranges

Long Range

Short Range

H =20m, 6, =2m

27 Sep 2006 SPE 103268 -- Kalla, White, Gunning, and Glinsky 20



Performance Summary

Process Work in Seconds
Kriging Work 5.95
Toeplitz solver work 0.22
Overhead for all 10* traces, 10 layers per trace 6.17
5000 samples, all traces 299.20
Total cost of simulation 305.37
Using 2 GHz Pentium-M processor with 1 GB of RAM
Implemented in ANSI C, g77 compiler, using NR & LAPACK routines

e 5000 samples for 10° unknowns in 5min on a laptop

e 98% of computation is for generating and evaluating steps
e Toeplitz solve is almost free

e Fewer samples could be used in practice
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Conclusions

e TG-MCMC consistently downscales seismic
inversions and integrates well and variogram
data

e Auxiliary variables model truncated layers

e TG-MCMC is adequately efficient with
Toeplitz assumptions

@ Extensions for exact constraints and other
properties seem feasible
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Delivery: Seismic Processing and
Inversion Software

e Bayesian preprocessing (cunning et al 2003, 2004)

+ Wavelet extraction
+ Time to depth maps
+ Well ties

e Bayesian seismic inversion code (Gunning et al 2005)

+ Set of plausible coarse scale reservoir models that honor seismic
+ Cornerpoint grid formats for reservoir simulation

e Bayesian methods help integrate diverse,
uncertain data
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Delivery Seismic Inversion
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¢ MCMC Samples from posterior distribution
- 7(t, V, V;9,NG,Fluid Type, ...) for each layer
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Truncated Gaussian Likelihood and Posterior
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Multi Facies Modeling

Continuous Facies

T —

Facies with Short Range like Shale

e Facies with different continuity can be sampled
iIndependently as there is no vertical correlation
e need (H,o.,) of individual facies

e Here two different facies are included

e top 5 layers are highly continuous layers (large range)
e bottom 5 layers have short range
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Sampling when Seismic Constraint is
Tight

e Only K-1 degrees of freedom are available as

Zil i = H

e Construct a new K-1 dimensional orthogonal
basis using Gram-Schmidt or SVD

e Sample on this new basis t'

e Need to build (unique) transformation matrix U
mapping to original coordinates t =U t'
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Ongoing Research

@ Several Distinct Facies inclusion in each seismic
loop

e Sampling on the constraint hyperplane

e Implementation of Block Methods to address the
concerns with sequential methods

e Constraint on porosities and other nonlinear
properties

e Selecting Realizations by upscaling the properties,
simulating, and principle component analysis
(PCA)
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Markov chain Monte Carlo (MCMC)

e Samples from posterior using Markov and Monte Carlo properties

@ A Markov Chain is a stochastic process that generates random
variables { X,, X,, ..., X, } where the distribution

P(Xt |X1:X29-~>Xz—1) :P(Xz |Xt—l)

i.e. the distribution of the next random variable depends only on
the current random variable

@ [These samples can be used to estimate summaries of the
posterior, 7, e.g. its mean, variance.
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Data Augmentation : Handles bends in the posterior

e Reversible MCMC hopping scheme that adjust to the
proposals to the shape of local posterior

e Define auxiliary variable u={0,1} as indicators of the layer
occurrence

e Sampling in indicator space is done by Gibbs sampling

e This handles pinchouts; details of t are handled in a
Metropolis step
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Metropolis for t

e It is possible to construct a Markov Chain that has the
posterior as its stationary distribution

e Inthe current step, the value of the parameters is X..
Propose a new set of parameters, Yin a symmetrlc
manner.

e Calculate the prior and likelihood functions for the old and
new parameter values. Set the parameter values in the
next step of the chain, X,,, to Y with probability a,
otherwise set to X,

oa(X,Y)= mm{ E(Y)}
(X))
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Convergence of Mean and Variance
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e Should converge to target distribution in as few
steps as possible

e Hopping
- large steps — acceptance rate low

- small steps — don’t explore posterior

» Scaled posterior —
¢ 5.67
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