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Abstract
Reservoir simulation models are constructed from sparse well
data, dense seismic data, and using geologic concepts to con-
strain stratigraphy and property variations. Because of the
sparseness of well data, stochastically inverted seismic data
offer important constraints on reservoir geometry and average
properties. Although seismic data are densely distributed, they
are uninformative about meter-scale features. Conversely, well
data reveal fine-scale features but cannot specify intrawell ge-
ometry. To build a consistent model, conceptual stacking and
facies models must be constrained by well and seismic data.
Stochastic ensembles of geomodels are used to capture variabil-
ity associated with seismic downscaling, lateral variability and
conceptual models. The resulting geomodels must be gridded
for flow simulation using methods that describe stratal architec-
ture flexibly and efficiently.

In this paper, geomodels integrate stochastic seismic in-
version results (for means and variances of “packages” of
meter-scale beds), geologic modeling (for a framework and pri-
ors), rock physics (to relate seismic to flow properties), and
geostatistics (for spatially correlated variability). These ele-
ments are combined in a Bayesian framework. The proposed
workflow produces models with plausible bedding geometries,
where each geomodel agrees with seismic data to the level con-
sistent with the signal-to-noise ratio of the inversion. An en-
semble of subseismic models estimates the means and variances
of properties throughout the flow simulation grid.

Grid geometries with possible pinchouts can be simulated
using auxiliary variables in a Markov Chain Monte Carlo

(MCMC) method. Efficient implementations of this method re-
quire a posterior covariance matrix for layer thicknesses. Un-
der assumptions that are not too restrictive, the inverse of the
posterior covariance matrix can be approximated as a Toeplitz
matrix, which makes the MCMC calculations efficient. The
proposed method is validated and examined using two-layer
examples. Convergence is demonstrated for a synthetic three-
dimensional, 10,000 trace, 10 layer cornerpoint model. Perfor-
mance is acceptable (305 s on a 2 GHz Pentium-M processor).

The Bayesian framework introduces plausible subseismic
features into flow models, whilst avoiding overconstraining to
seismic data, well data, or the conceptual geologic model. The
methods outlined in this paper for honoring probabilistic con-
straints on total thickness are general, and need not be confined
to thickness data obtained from seismic inversion: any spatially
dense estimates of total thickness and its variance can be used,
or the truncated geostatistical model could also be used without
any dense constraints.

Intoduction
Problem Statement. Because reservoirs are sparsely sampled
by well penetrations, seismic survey results provide essential
controls for modeling. However, beds thinner than about 1/8
to 1/4 the dominant seismic wavelength cannot be resolved in
these surveys.1, 2 For depths of ≈3000 m, the maximum fre-
quency in the signal is typically about 40 Hz and for average
velocities of ≈2,000 m/s this translates to best resolutions of
about 10 m. Besides the limited resolution, seismic-derived
depths and thicknesses are uncertain because of noise in the
seismic data and uncertainty in the rock physics models.3, 4 This
resolution limit and uncertainties associated with seismic depth
and thickness estimates have commonly limited the use of seis-
mic data to either inferring the external geometry or guiding
modeling of plausible stratigraphic architectures of reservoirs.5

Our objective is to use probabilistic depth and thickness in-
formation from the layer–based seismic inversion code DELIV-
ERY3 as input to a downscaling algorithm operating on a cor-
nerpoint grid that may be coarser than the geomodel. Seismic
constraints and priors are modeled on the quasivertical block
edges, analogous to seismic traces. Simulation at the edges
preserves geometric detail in cornerpoint models.This problem
fits inside a larger workflow, where this combination of the
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geomodel, well data, and seismic data is referred to as “en-
forcement,” and the associated algorithms comprise the soft-
ware package known as ENFORCER. The integration of seismic
inversion information with spatial correlation requirements at
the meso- or layer–package scale, and the associated remapping
of seismic geometry to cornerpoint geometry is performed by
the DELIVERYMASSAGER.6 Fuller integration of the geomodel
and a flow simulation is a subject of ongoing work.6, 7 These
coarse–scale models must be downscaled to the flow model
scale, honoring well data such as layer thicknesses, porosity
and permeability.8, 9 The downscaling must embrace concep-
tual geologic models for providing stratigraphic frameworks,
especially layer correlation models between sparse condition-
ing points. Analogous seismic-scale frameworks are used in
DELIVERY3 for constructing prior estimates of layer locations,
and are typically constructed using geomodeling software,10 but
quasi-mechanistic depositional modeling11 or surface-oriented
geostatisics algorithms12 are possible alternatives.

The inputs to the downscaling problem are typically realisa-
tions of the seismic inversion coarse–scale model “massaged”
to the edges of columns of the cornerpoint grid. These inverted
models contain all the requisite coupling between geometry and
rock properties which seismic inversion induces, plus the nec-
essary spatial correlation behaviour forced by the massaging al-
gorithm. These coarse scale models provide explicit constraints
on the corresponding subgridded models, which are nontrivial
to respect using conventional geostatistical algorithms for fine
scale heterogeneity.

A characteristic difficulty is that parameters of the fine–
scale model such as thickness may have one–sided or mixture
distributions (e.g., the mode of layer thickness may be zero, in
a cornerpoint model). Because of constraints to be imposed,
linear estimation may prove inadequate. For example, if one
wishes to ensure consistency both in thickness and in average
porosity in a downscaling problem consisting only of vertical
gridding refinement, the following equations must be consid-
ered at column of gridblock corners:

K∑
k=1

hk = H

K∑
k=1

hkφk = Φ̄H

where K is the number of layers, k indicates a particular layer,
φ is the porosity, h is a layer thickness, H is the total thickness
predicted by seismic, and Φ̄ is the estimated average porosity at
the trace scale. If layer porosity and thickness must be jointly
estimated, the problem is nonlinear.

In summary, seismic downscaling to well and stratigraphic
data on an arbitrary cornerpoint grid is a difficult problem,
chiefly on account of the complex constraints, but also because
of significant nonlinearities.

Use of Terms. The following conventions are used.
Layers are generally not resolved by seismic data, but can be
identified in wells. This terminology is illustrated in Fig. 1.

Sublayers might exist if some geomodel layers are not resolved
in the cornerpoint grid layers. In this paper, well data is used
only at the layer scale – log and core data must be upscaled.
Traces are a segment of reservoir whose average properties are
constrained by seismic, and will generally contain many lay-
ers. Traces correspond to the edges of the cornerpoint grid-
blocks13 (viz., COORD records).14 Conditioning data are a type
of trace; order, properties, and thickness are specified at condi-
tioning traces.
A Path is a sequence in which traces (or layers, or blocks) are
visited. We use a quasirandom multigrid path.
Multigrid paths are paths which preferentially visit widely
spaced points early.
The Resolution Matrix is the inverse of the covariance matrix,
and closely related to the Hessian in an optimization problem.

Problem Formulation
Our approach is to combine diverse data elements in prior and
likelihood expressions to obtain a posterior probability. The
overall posterior distribution is approximated by the posterior
obtained by a multigrid sequential simulation passing over all
columns or column–blocks of the cornerpoint grid. Each col-
umn of blocks is simulated by sampling from a Bayesian poste-
rior distribution conditional on hard data and previously visited
columns via the priors, and collocated coarse scale constraints
via the likelihood. The prior distribution for each column is
determined by solving an ordinary kriging system15 using ob-
servations and previously simulated values. The seismic data
are incorporated via a constraint on the sum of the layer thick-
nesses, which comes from a stochastic seismic inversion. In the
proposed approach, layer thicknesses are modeled as truncated
Gaussian processes to allow for pinchouts; this model compli-
cates imposition of the seismic sum constraint (Sampling Ap-
proach, later). The prior data and thickness constraints are com-
bined in a Bayesian posterior form. Finally, the posterior is
sampled using Markov chain Monte Carlo methods with aux-
iluary variables.16

An efficient approximation to the posterior covariance ma-
trix is crucial to the success of this Bayesian approach. This
posterior covariance matrix is required by the sequential sim-
ulation algorithm, and encapsulates the compromise between
prior information from kriging and total thickness constraints
derived from seismic information.

For simplicity, we consider systems with a single thick-
ness constraints. More general constraints are addressed in Ap-
pendix A. Numerical methods and sampling methods are dis-
cussed in later sections.

Algorithm Outline. Before discussing details, the algorithm
framework is presented (Fig. 2). First, the untruncated Gaus-
sian surrogate for all conditioning data with h = 0 must be
simulated; this can be done just once, for all sequential sim-
ulation paths and conditioning traces (Appendix B). Then, a
multigrid random path for a sequential simulation is generated.
At each point on the path, the prior is estimated, and the likeli-
hood is computed using a Gibbs sampler on an auxiliary vari-
able to treat the possibility of zero thicknesses, followed by
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a Metropolis-Hastings step to propose a new thickness vector.
The chain is iterated to convergence, a sample vector t is drawn,
and the simulation then moves to the next trace in the path. Mul-
tiple paths can be used to generate multiple chains, in the same
way sequential Gaussian simulations generate multiple realiza-
tions.17

Prior Mean and Variance by Kriging. The untruncated
proxy t is kriged. The proxy t may take on negative values,
whereas h is truncated at zero. The probability of tk ≤ 0 corre-
sponds to the probability that layer k is absent, locally:

P (hk = 0) =
∫ 0

−∞
dP (tk) (1)

A few assumptions can simplify the kriging solution, and
greatly improve efficiency (Numerical Considerations, later).

1. For many block shapes and grid spacings, traces can
be approximated as vertical when computing the kriging
covariance matrix (i.e., small lateral trace displacement
compared to trace spacing). Then the areal separation be-
tween the visited trace and each of its neighbors is con-
stant for all layers all trace-neighbor pairs.

2. If in addition the covariance models are the same for all
layers, then the covariance matrices will be the same on
a layer-by-layer basis as well.

3. Layer thicknesses may be a priori uncorrelated verti-
cally at each trace. This may be reasonable, as the lateral
thickness variations are likely more informative than the
thicknesses of the layers above and below. This assump-
tion seems particularly appropriate for tubidite systems,
in which meter-scale beds may correspond to individ-
ual depositional events: bed thicknesses then correlates
strongly only within beds, with between-bed correlations
being weak or even negative if compensatory deposition
or scouring were occurring.

If all of these assumptions are reasonable, then (1) the priors
for each layer can be computed separately, (2) the kriging ma-
trices are identical for all layers, and therefore only one krig-
ing system needs to be solved at each trace, and (3) the prior
variances in each columns are then uniform. The prior means
vary layer-by-layer. The tracewise-constant prior variance al-
lows much more efficient solution methods (Numerical Con-
siderations, later). These assumptions need not be imposed:
this would make the kriging system(s) more expensive to solve,
and the approximation to the posterior covariance will be much
more expensive to compute.

The neighbor list is extracted from the list of conditioning
data and previously simulated points using a k-d tree18 with
specifications of desired points per quadrant. This search strat-
egy is more efficient than most alternatives, especially on ir-
regular grids. Also, assuming only two-dimenional layer thick-
ness correlation implies that a two-dimensional search suffices,
further improving search efficiency. Cokriging or collocated
kriging could be used to get prior covariances.15 Such a result
could be integrated well with the seismic data, which provide
local correlated estimates of trace-scale properties.3

If vertical correlations are included, separate neighbor lists
may be required for each of the K` layers at the trace, or a sin-
gle list could be used for all layers. While the single list might
require solving a larger kriging system, it would only require
solving one kriging system for all K layers.

We use a Cholesky factorization to solve the kriging sys-
tem. The estimated thickness is t̄k. The estimation variances
from the kriging system, σ2

tk for the thickness of layer k, will
be used in the resolution matrix.

This step in the algorithm supplies prior means t̄ and vari-
ances σ2

t for all layers on a given trace.

The Posterior Resolution Matrix. Additional data from the
seismic data are combined with the prior to obtain an unscaled
posterior probability. The seismic data are incorporated as a
constraint on the total thickness, H̄ , with resolution 1

σ2
H

obtained

from a stochastic inversion using DELIVERY.3 The stochas-
tic inversion assumes no trace-to-trace inversion and the traces
are not coincident with cornerpoint edges in the flow model.
Geologically plausible lateral correlations are introduced, and
seismic data are kriged to the (possibly nonvertical) corner-
point edges using methods implemented in DELIVERYMAS-
SAGER.6, 7

The posterior probability for any thickness vector t is, from
Bayes’ rule,

π (t|H,d`k) =
p (H|t,d`k) p (t|d`k)

p (H|d`k)

where d`k is a vector of the all neighboring conditioning or pre-
viously simulated traces in layer k in the neighborhood of trace
`. The likelihood £ is proportional to the posterior, without
normalizing term in the denominator, which does not depend
on t. The posterior probability of the model for t is

π (t|H,d`k) ∝ £ (H) p (t|d`k) (2)

where £ (H) = p (H|t,d`k) We assume that departures from
the prior (t̄k) and updating (H̄) data means are normally dis-
tributed with standard deviations σtk and σH , respectively. The
assumptions apply to departures, not values, and so the result-
ing posterior probabilities are not assumed to be normal, as will
be demonstrated in later examples. The multivariate distribu-
tion of t is

p(t|d`k) =
1

(2π)
K
2 |Cp|

1
2

exp
[
−1

2
(t− t̄)T C−1

p (t− t̄)
]
(3)

where Cp is the prior or kriging covariance matrix, which is
rank K with the kriging variances σtk along the diagonal.

Similarly, we can express the udpdating constraint H as

p(H|t,d`k) =

√
1

2πσ2
H

exp
[
− (H − H̄)2

2σ2
H

]
(4)

where
H = tT T (5)



4 CONSISTENT DOWNSCALING OF SEISMIC INVERSIONS SPE 103268

and

Tk =

{
0 if tk < 0
1 otherwise

(6)

The conditioning on d`k in Eqn. (4) is indirect, due to the con-
ditioning of t on d`k. The product of Eqns. (3, 4) is the pos-
terior. The product can be linearized by taking the logarithm,
giving

−2 ln [π (t|H,d`k)] = ln
[
(2π)K |Cp|

]
+ ln

(
2πσ2

H

)
+

(t− t̄)T C−1
p (t− t̄) +

(tT T−H)2

σ2
H

(7)

The Hessian, G of Eqn. (7) is the desired resolution matrix
(which is the inverse of the posterior covariance):

G = C−1
p + TTT /σ2

H (8)

Because the prior covariance matrix is diagonal, C−1
p and G

are easy to compute. For Tk = 1,∀k, the Hessian has the form

G =


1

σ2
t1

+ 1
σ2

H

1
σ2

H
· · · 1

σ2
H

1
σ2

H

1
σ2

t2
+ 1

σ2
H
· · · 1

σ2
H

...
. . . . . .

...
1

σ2
H

1
σ2

H
· · · 1

σ2
tK

+ 1
σ2

H

 (9)

If the prior variances σtk are all equal, G is Toeplitz,19 and in
fact a particularly simple form, with all super- and subdiagonals
equal. Note that the Hessian is constant except for the depen-
dence of T on t; this is the lurking nonlinearity in this problem.

Prior and Likelihood Distributions in 2D
Important features of higher-dimensional cases are easily visu-
alized for a system with two layers (Fig. 3). Simple parameter
choices have been made to clarify the explanation. In this ex-
ample, the prior mean thicknesses sum to greater than the mean
trace thicknesses, so the prior center of mass [circles in Fig. 3;
Eqn. (3)] lies above the maximum likelihood line [dashed line
in Fig. 3; Eqn. (4), for tk > 0,∀k ∈ 1,K]. Because t̄1 is large
compared to H̄ , there is substantial prior probability and likeli-
hood – and therefore posterior probability – that t2 is negative,
so that h2 = 0.

In three dimensions, the dashed line in Fig. 3 corresponds
to a triangle with vertices on each t-axis at H̄; increasing H̄
shifts the high-likelihood region away from the origin, but with
no change in slope. Tighter seismic constraints will narrow the
width of the high-likelihood region.

The assumption of equal prior variances implies the prior
has the circular shape shown in Fig. 3; it would be ellipsoidal
if prior variance varied. If variances were unequal, and layer
means correlated, the prior would be an appropriately rotated
ellipsoid. Although such priors could be sampled using meth-
ods discussed in this paper, the resolution matrices would be
non-Toeplitz and the algorithms much slower.

If no layer kriging data were used and the seismic data were
considered exact, any layer thickness pair (t1, t2) along the
dashed line with 45 degree slope could be used. Conversely,
in a sequential simulation not conditioned to seismic, the layer
thicknesses would simply be drawn from the prior (Fig. 3).

The sampling problems and nonlinearity in this problem are
caused by the bends in the likelihood where the axes are inter-
sected by the contours of the likelihood surface (Fig. 3). This
nonlinearity may dominate sampling where the priors admits
significant probability of one or more thicknesses being zero (as
is the case for layer 2 in Fig. 3). In higher dimensions, many
layers may be pinched out at any given trace, and a method to
move“around” these corners is needed (Auxiliary Variables to
Treat Pinchouts, later).

Sampling Approach
Because the log–posterior surface is quadratic with constraints
(Eqn. (8), the most likely a posteriori thickness vector could
be found by constrained quadratic programming.20 However,
our goal is simulation, not maximum–aposteriori estimation, so
we must sample from the posterior. We use a Markov chain
Monte Carlo (MCMC) method.

In this section, we focus on simulation at a given trace `.
The overall simulation proceeds by visiting all ` that are not in
the conditioning data set by a specific, random, multigrid path.

Observed Thicknesses of Zero. Some layers may be absent
at conditioning points, hk = 0. For these points, we only know
that tk ≤ 0 at these points, but require a particular value of tk to
use in estimating means at the traces to be simulated. One could
simply draw random numbers in the range [0, P (hk = 0)] and
applying an inverse normal transformation, but this decorrelates
the variables. Instead, we precondition these data using a Gibbs
sampler to preserve the correlation (Appendix B).

Auxiliary Variables to Treat Pinchouts. The posterior distri-
bution has marked bends at the interfaces in parameter space
where layers pinch out (i.e., the hyperplanes tk = 0; Fig.
3). Standard MCMC methods based on small jumping propos-
als will diffuse around such distributions very slowly. It has
been shown that introducing auxiliary variables u can promote
mixing, or alteration between states, in several types of diffi-
cult MCMC problems with related “configurational stiffness”
characteristics.21 Auxiliary variable methods use an augmented
posterior probability:

π(u, t) = π(t)π(u|t) (10)

where the variables u are chosen so as to provide useful in-
formation for constructing jump proposals in the MCMC al-
gorithm, and the stochastic variables t are obtained from the
augmented-state posterior samples by simple subselection.

The term π(u|t)
[
=
∏K

k=1 π(uk|tk)
]

is a conditional prob-
ability for the auxiliary variables which may be constructed in
any helpful way. In our case, we construct the conditional to
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help detect the kinks in the posterior that occur when layers
pinch out: one possible choice of a symmetric form is

π (uk = 1|tk) =

{
1− 1

2+tk/σπk
if tk ≥ 0

1
2−tk/σπk

otherwise
(11)

where σπk is a univariate approximation to the multivariate pos-
terior covariance,

1
σ2

πk

=
1

σ2
tk

+
κ

σ2
H

(12)

That is, σπk ≈
∑K

j=1 Gkj , [Eqn. (9)]. κ is the current number

of active layers; κ =
∑K

k=1 Tk ≤ K.
Sampling from the augmented posterior distribution is per-

formed by alternating Gibbs samples for the auxiliary variables
with Metropolis–Hastings samples for the thicknesses tk. The
Gibbs sampling scans over the layers. At each layer, a uniform
[0, 1] random number is drawn. If the random number is less
than π(uk = 0|tk), uk ← 0. When the uk for all K layers
have been simulated, we construct a resolution matrix (depen-
dent on u) from which jumping proposals are formed which are
well ’tuned’ for the current configuration of the system. The
auxiliary variables create an adaptively varying proposal ker-
nel which does not break reversibility. The new kernel is used
to sample a new thickness vector t using a Metropolis-Hastings
step. The proposal kernel adapts by omitting terms with uk = 0
in the resolution matrix.

The Gibbs sample gives a list of “likely” active layers at
the current iterate in u. Let the number of active layers be
κ, κ ≤ K. At each trace, a resolution matrix of rank K
is constructed before the first iteration and its Cholesky fac-
tors are computed. Note that the “adaptive” resolution matrix
Gκ = C−1

p + uuT /σ2
H is used in forming the Cholesky fac-

tors underlying the jumping proposal [Eqn. (14), later], but
the likelihood evaluated at a point t requires the strict Hessian
G = C−1

p + T(t)T(t)T /σ2
H . The appropriate resolution and

inverse matrices are computationally inexpensive for the sim-
ple Toeplitz resolution matrix used in the proposed approach
(Numerical Considerations, previously).

Metropolis-Hastings Step. The Cholesky factor multiplied
into a κ-long vector of random normal variables r ∼ [N(0, 1)]
produces a vector ∆t of proposed changes in t,

∆t = sLCπr (13)

so that ∆t ∼ N(0, s2Gκ), where s is a scalar chosen for sam-
pling efficiency,16 typically s2 = 5.76/K for large K. This
vector is rank κ, and the changes must be sorted back into t
by referencing u. We can compute the likelihood at the new
point t′ = t + ∆t, using Eqn. (4). The Metropolis-Hastings
transition probability is then16

α = min

(
1,

π (t′|H,d`k)
∏K

k=1 π(uk|t′k)

π (t|H,d`k)
∏K

k=1 π(uk|tk)

)
(14)

Equation (14) is similar to the standard Metropolis-Hastings ra-
tio, but has been modified to include the auxiliary variables so

that reversibility is maintained. The proposed transition ∆t is
then accepted with probability α, and the algorithm proceeds to
the next Gibbs sample for the auxiliary variables.

Numerical Considerations

The Toeplitz form of the posterior resolution matrix and sub-
sidiary assumptions simplify computations. Because of these
simplifications, only two matrix solutions are required per
trace: (1) a Cholesky factorization of the kriging matrix (which
is dense and not Toeplitz, with rank equal to the number of
neighbors used, N`), and (2) the factorization of the inverse of
the Toeplitz resolution matrix (rank K` and very inexpensive).
If the Toeplitz-yielding assumptions were not made, K` rank-∑K`

k=1 N`k kriging systems are required at each trace `. Even
more prohibitive, the posterior resolution matrix G would have
to be refactored every time any tk flips from a negative to non-
negative state. Because this occurs deep within the sampling
method (Sampling Approach, later), this would result in a re-
markable loss in efficiency.

To carry out the simulation, we need the Cholesky factor
LCπ of the posterior covariance matrix, Cπ = G−1. With
LCπ , we can generate correlated normal deviates, ∆t, from
uncorrelated random normal input vectors, r, ∆t = LCπr
(Metropolis-Hastings Step, earlier).15 For the special Toeplitz
matrices, the factor LCπ can be computed from the Cholesky
factor of the resolution matrix G. That is, (1) Factor G to get
LG, (2) invert LG by backsubstitution to get L−1

G (inexpensive
because the matrix is triangular), and (3) take the persymmetric
transpose of L−1

G . This is the Cholesky factor of Cπ , LCπ .
The rank “downdate” from K to κ < K is the lower κ× κ

triangle of LCπ . Thus, all the required factored correlation ma-
trices LCπκ, regardless of the number of active layers κ, can be
computed from a single factoring and inverse to get LCπ and
taking the appropriate rank-κ submatrix.

In combination, the efficient factorization method for the
posterior rank-K covariarance matrix and determination of
LCπκ for all possible pinchout combinations makes this algo-
rithm efficient. Precise work estimates for these matrix calcu-
lations have not been done, but an upper bound is the work
done for a general Toeplitz matrix,19 inverting the resolution
matrix and factoring that inverse to get LCπ . For that less ef-
ficient approach, the inverse of the Toeplitz resolution matrix
requires W ∼ K3 floating operations (flops), and further work
W ∼ K4 flops is required for the factoring. In comparison, the
proposed method is at worst W ∼ K3 for the inverse and all
factors, a full order of improvement.

Simulations of Two-Layer Systems

Several two-layer simulations illustrate the behavior of the data
integration algorithm. Different combinations of prior and
updating data variance are considered, along with perfectly
consistent versus slightly contradictory prior means and con-
straints. Results are summarized in Table 1.



6 CONSISTENT DOWNSCALING OF SEISMIC INVERSIONS SPE 103268

Tight Sum Constraint. This case assumes the sum of the
layer prior means is equal to the trace mean, but the layer thick-
nesses are poorly resolved (Fig. 4). Because the means are
consistent and the constraint variance is relatively small, the
simulations tightly cluster around the constraint line, and the
posterior means of t are near their prior means, although the
correlation induced by the constraint is marked (covariance col-
umn, Table 1). Moreover, many realization have t near (4, 0)T

(which is very unlikely in the prior) because of the relatively
tight seismic constraint (σt/σH = 10). The bend in the poste-
rior caused by the pinchout is clearly seen below t2 = 0 [Fig.
4(a)]. The posterior layer variances are reduced because of the
added data in the constraint (eigenvalues, Table 1). The ax-
ial (maximum) standard deviation is the same for the posterior
as for the (isotropic) prior, but the transverse standard devia-
tion is significantly reduced. The univariate histograms of t are
slightly non-Gaussian, and truncation makes the histograms of
h depart even more.

Loose Constraint and Prior. As for the previous case, the
prior means are taken to be consistent with the seismic con-
straint. However, the variances of both prior and constraint are
higher for this case. The data are therefore more dispersed, and
it is much more likely that layer 2 is assigned a zero thickness
(Fig. 5). As before, although t appears nearly Gaussian in the
univariate histograms, h will be truncated to nonnegative val-
ues and is thus non-Gaussian, and the bend in the posterior at
t2 = 0 is observed.

Sum of Prior Means less than Constraint. A mismatch be-
tween the prior layer means and the thickness constraint shifts
the axis of the cloud of simulations points above or below the
constraint line (Fig. 6). In this case, both layers thicknesses
are increased from their priors to better match the seismic con-
straint. For the moderate standard deviation and prior means
much greater than zero, few truncations occur and the posteri-
ors are nearly Gaussian. For this nearly multi-Gaussian case,
the constraint has transformed the isotropic, uncorrelated prior
thicknesses (Fig. 3) to a strongly correlated, more compact pos-
terior. Because the prior and constraint variances are equal, the
mean of the scatter cloud is shifted roughly one-half the dis-
tance from the prior toward the constraint, as would be expected
(Table 1).16

Convergence. MCMC methods may converge too slowly to be
practical, or may have multiple modes such that multiple chains
and/or methods to switch between modes are needed. In numer-
ical experiments undertaken so far, these potential problems do
not appear to be too severe in this algorithm.

Convergence is critiqued by examining posterior distribu-
tion statistics over many iterations.16 For a variety of cases
examined, the means converge in no more than ≈ 1000 iter-
ations, and the variances stabilize in no more than ≈ 2500 iter-
ations. That is, some 2500 iterations are needed for the chain
to begin sampling the posterior reliably; this is referred to as
the “burn–in;” samples prior to burn in are discarded before the
chain is used to simulate the posterior. This number of itera-

tions, while large, is not prohibitive if the proposal method is
computationally inexpensive (Numerical Considerations, pre-
viously) and the acceptance rate is not too small. For a realistic
3D synthetic problem, the proposed method attains a sampling
rate of almost 200,000 iterations per second and an acceptance
rate averaging ≈ 0.4, which makes such long burn-in require-
ments manageable (Synthetic 3D Cases, later).

Chains started in widely dispersed parts of t-space converge
to the same posterior (Fig. 7). This was expected, based on the
relatively simple form of the posterior resolution matrix, G.
The early behavior depends on the starting point [Fig. 7(a)]:
chains that move in from the flanks of the constraint (transverse
paths) take large, efficient steps; those moving along the axis
zig-zag and advance more slowly. The latter is the classic be-
havior of movement along a trough in a minimization problem
where the eigenvalues of the Hessian differ markedly (Table 1).
After many iterations, all chains are sampling the same region
[Fig. 7(b)], and the post-burn-in chains are statistically indis-
tinguishable.

Recapitulation. The simple two-dimensional examples indi-
cate the algorithm is reproducing expected results in limiting
cases. Extensions for multiple facies and non-Toeplitz resolu-
tion matrices are addressed in the Discussion and expanded in
Appendix A.

Synthetic 3D Cases
A synthetic data 3D data set is used to test and illustrate the
MCMC simulation method. Prior (range of semivariogram, R)
and updating data (trends in H̄ and σH ) parameters are varied
to illustrate behavior, and algorithm performance is discussed.

For all cases, I×J×K is 100×100×10 and the x−y extent
is 1000× 1000 m. The framework for the reference model was
created by randomly placing objects with scaled bi-Gaussian
thickness variations in x and y; for the 1 km areal grid, an
isotropic standard deviation, σ = 500 m, was used to com-
pute layer thickness with h(x, y) = hmax exp

[
(x−x̄)2+(y−ȳ)2

σ2

]
. This object-based method with Gaussian thickness variations
is not the same as a Gaussian covariance process. The object
models are used only to create conditioning data. Twenty-five
traces were used in cases discussed in this section; the algo-
rithm has also been used with no conditioning traces and with
up to 200 conditioning traces.

Illustrative Cases. Four different cases show features of the
data integration method (Fig. 8). With short ranges, termination
is much more common, although the average layer thickness is
similar to the longer range [Figs. 8(a,b)]. There is little noise,
unlike what is commonly observed in Gaussian processeses; the
layer thicknesses vary smoothly and plausibly, and near-zero
thicknesses do not appear in isolated areas; this results from
the truncation rules and the smooth Gaussian variogram. The
pinchout pattern is clearer in the longer-range case (b). In par-
ticular, the light yellow layer near the base and the dark blue
layer in the middle appear to taper and pinch out smoothly;
this behavior is more characteristic of object models than most
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covariance-based simulations.
Seismic data may imply a thickness trend [Fig. 8(c)]. The

seismic trend will be reproduced in the simulation, with a pre-
cision conditioned on the inferred seismic thickness variance,
σH . If the seismic variance is higher for smaller mean thick-
ness, low thicknesses fluctuate more, as can be seen by com-
paring the left front edges of Figs. 8(c) and (d). For the low
variance case (c), the edge panel is of nearly uniform thickness;
the nonuniform variance case (d) has much greater fluctuation
on the left edge.

Although based on a synthetic case, these results indicate
that the proposed method can reproduce complex pinchout lay-
ering and plausible seismic trends. The number of pinchouts
can be quite large in complex cornerpoint grids; 30,608 of
100,000 trace segement are zero-thickness in one of the ex-
ample cases [Fig. 8(c)]. The complex pinchout structure is
obtained even though the conditioning data are not especially
dense [Fig. 8(d)].

Performance. For adequate performance, an MCMC simula-
tion should converge to its target distribution in as few steps as
possible. A large step size helps explore the posterior in few
steps. On the other hand, large steps are more likely to rejected,
“wasting” computations on a sample that is not retained. The
step size is usually adjusted indirectly, by scaling the poste-
rior covariance (which is used to generate steps; Metropolis-
Hasting step, earlier). For the system examined, the covariance
is not scaled; this gives a step size of the order of the square
root of the smallest diagonal element in the posterior covari-
ance matrix. In high-dimensional problems, it may be more
appropriate to use C̃π = 5.67

K Cπ to ensure adequate accep-
tance rates.16 Although the unscaled covariance yields larger
steps for K = 10, the test cases had acceptance rates of 30 to
40 percent. This step size and acceptance rate appear to yield
good convergence, thorough exploration of the posterior, and
smooth posterior samples (where they should be smooth). The
best choice of scaling is problem-dependent.

The computational cost of a single simulation [for the case
of Fig. 8(a)] is examined component-by-component in Table 2.
Several features are striking. First, 97.98 percent of the work is
done in the deepest part of the sampling loop, which requires
random number draws, extractions of submatrices, and multi-
plication of random normal vectors by lower triangular matrices
(the Cholesky factor of the posterior covariance matrix, LCπκ).
None of these operations is particularly expensive, but a total
of 5 × 107 iterations were performed for this case (≈ 164, 000
samples accepted per second). Because the kriging system is
solved only once per trace – and is two-dimensional, with an
efficient k-d neighbor search – the associated work is small,
about 1.95 percent. The Toeplitz manipulations are practically
cost-free, only about 0.07 percent of the total work. Finally, the
overall cost of about 5 minutes on a laptop computer (for 105

unknowns) does not seem prohibitive.
Because it is a tracewise sequential algorithm, this MCMC

method scales linearly in the number of block edges, or traces.
Thus, a model with 106 traces and 10 layers should require ap-
proximately 8.5 hrs if attempted on a single Pentium-M pro-

cessor with adequate memory: not too alarming, for a model
with 107 unknowns. Work scales approximately with the third
power of layer count (Numerical Considerations, previously),
so that a model with 20 layers would take 8 times as long as
the 10-layer model used in the illustrations. A crude estimate is
that a 1000 × 1000 × 20 model would require about 68 hours
on a single 2 GHz processor (neglecting degradation to use of
virtual memory).

Discussion
Sequential Methods. The most difficult aspect of these non-
linear downscaling problems is the issue of whether the over-
all system posterior distribution can be safely factored into the
product of conditional distributions implied by the sequential
pass over the columns of gridblocks. This factorisation requires
computing both analytical marginal distributions (integrating
over “unvisited” sites), and conditional distributions dependent
only on “visited” sites. This requirement is usually met only by
exponential family distribution functions. The posterior in our
problem does not strictly satisfy these requirements. Nonethe-
less, the approximations we make can doubtless be improved
by blockwise sequential schemes, though a block approach in-
creases the dimensionality of the MCMC sampling subproblem,
and the configurational complexity of handling more pinchout
transitions.

Notwithstanding these concerns, we have demonstrated that
using auxiliary variables greatly facilitates effective sampling
of a complicated high–dimensional posterior distribution that
arises in the downscaling problem we address. Similar difficul-
ties will arise in any more or less rigorous recasting of the prob-
lem, so the technique we demonstrate should be widely applica-
ble. Possible extensions are use of mixture–independence sam-
plers22 that take advantage of the piecewise quadratic form of
the log–posterior function, and generalisation to multiple cor-
related variables in the model and associated likelihood.

Related Methods. As discussed in Simulation of Two-Layer
systems, if no layers are likely to be absent, the posterior distri-
bution remains multi-Gaussian, and simulation and estimation
methods are linear. In this case, the proposed method is a vari-
ant of collocated cokriging, where the collocated data are a sum
rather than a constraint on a single thickness.15 The proposed
methods are needed only when there is substantial likelihood of
layers terminating laterally, in which case untruncated Gaussian
models will fail.

Previous work on reservoir characterization with truncated
Gaussian fields has focused on categorical simulations.23, 24 In
contrast, the proposed method combines aspects of categori-
cal and continuous simulations. The condition tk ≤ 0 on the
thickness proxy is equivalent to setting an indicator for layer
occurrence to zero. However, in the categorical case all tk > 0
would be identical (for a binary case), whereas we use values
tk > 0 to model the continuous variable hk. This hybrid ap-
proach could be applied without constraints, yielding sequential
truncated Gaussian simulations of thickness; this corresponds
closely to the cases with high σH presented above, and the re-
sulting images would be similar.
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The examples presented all use truncated normal distribu-
tions. The positive portion of the distribution is treated as nor-
mal, without any transformation. If the nonzero thickness his-
togram is not nearly a truncated normal, a normal score score
transform could be used to make the positive part of the t dis-
tribution univariate normal. The transform would be applied
over the cumulative probability range [P̄ (hk = 0), 1], where
P̄ (hk = 0) is the areal proportion that zero thickness occurs in
layer k – over all of layer k, not at a single trace..

Cornerpoint Grids. The MCMC simulation is over the block
edges, or traces. This is different from many geostatistical mod-
eling approaches, which are commonly block-centered. How-
ever, geometry – especially pinchouts or discontinuities at faults
– can be modeled much more accurately using cornerpoints.
The porosity and other rock properties should be simulated
or estimated at the same point, because these properties are
generally correlated through the rock physics model and seis-
mic response. Even for cornerpoint grids, reservoir simulators
use block centered values for rock properties such as poros-
ity. The trace properties must be averaged appropriately to
the block center. A simple mean is probably adequate for
thickness and porosity-thickness. However, the permeability
must be upscaled more carefully, especially for nonrectangu-
lar blocks; a good method would be to integrate the Jacobian
over the half-block domains.25 Even for uniform permeability,
the Jacobian integration correctly provides face- and direction-
dependent transmissibilities for a nonrectangular grid. The
method could also be used to perform approximate upscaling
for sublayer heterogeneities, and compute more accurate pore
and bulk volumes.

Extensions. Three extensions being pursued. First, several
distinct facies will be subjected to separate seismic thickness
constraints. This will permit conditioning on net-to-gross as
well as gross thickness. In addition, the blockiness of the con-
straints should allow decomposition of the multifacies problems
into a series of single facies problems (Appendix A). Such
block structure would also allow different facies to have distinct
correlation structures and means, which is desirable. Second,
weighted average constraints, of the form

∑K
k=1 hkφk = Φ̄H ,

are being investigated. Such constraints are nonlinear. Sev-
eral linearization strategies are possible, including simply lag-
ging less-variable parameters or using their mean. More gen-
eral scale linkages have been implemented using Markov ran-
dom fields.26 Finally, block methods or other approaches will
be considered to address difficulties with the computation of
marginal distributions in non-Gaussian sequential simulation
(Sequential Methods, earlier).

Conclusions
Stochastic seismic inversion computations can be integrated
with a truncated Gaussian geostatistical model for layer thick-
nesses using a Markov chain Monte Carlo method. Trunca-
tion makes the problem nonlinear, which necessitates the intro-
duction of auxiliary variables and a mixed Gibbs-Metropolis-
Hastings sampling procedure. Under reasonable assumptions,

the posterior resolution matrix is a special form of Toeplitz ma-
trix; the special form can be exploited to make MCMC sam-
ple proposals much more efficient to evaluate. Proposal effi-
ciency is critical to the usefulness of the method, because many
thousand proposals must be evaluated at each trace for a single
cornerpoint grid realization. The ability of the method to re-
produce limiting case results and correctly model truncations is
verifed by examining algorithm behavior in two dimensions. A
synthetic 3D case demonstrates that the procedure is acceptably
fast. Although many issues remain – especialy implementation
of more complex constraints and integration with fine-scale ge-
omodels – the proposed method appears to offer a foundation
for further development.
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Nomenclature

Roman Symbols
Cp prior covariance matrix based on kriging, m2

G posterior resolution matrix or Hessian, m−2

h nonnegative layer thickness, m
H total thickness at trace, m
£ likelihood
p probability density
P probability
r random number
Rx covariance range parameter in direction x, m
s scaling factor
t Gaussian proxy for h, may be negative, m
u auxiliary variable correlated to layer state
T Tk = 1

2 (sgn(tk) + 1)
W computational work, flops
x, y, z coordinates, m
X, Y, Z grid extents, m

Greek Symbols
α Metropolis-Hastings transition probability
∆ separation vector for variogram models, m
φ layer porosity
κ number of layers at a trace with tk > 0
Φ̄ trace average porosity
π posterior
σ2 variance
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Indices and Special Subscripts
D number of nonzero conditioning data
f, F facies index and count
i, j, k indices in x, y and z directions
I, J,K maximum values of i, j, and k indices
`,m indices over traces and layer-wise trace seg-

ments, respectively
L,M total number of traces and layer-wise trace

segments, respectively
m mudstone
p prior
s sandstone
λ, Λ zero thickness data index and count

Diacritical Marks
·̄ mean
·′ proposed point, may become new point
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Appendix A: Possible Extensions
Formulations for cases in which the prior variances from the
kriging step are not equal for all layers or the thickness con-
straints are not applied to all layers as a group are addressed in
this appendix. This situation arises if (1) the distances between
each trace and its neighbors are not nearly constant (i.e., steeply
inclined cornerpoint grid edges), (2) prior correlation between
layer thicknesses at a trace (3D kriging), (3) distinct correlation
ranges in different layers, or (4) different groups of layers have
distinct sum constraints.

General Case. Even if all the previous complications are in
force, the sampling method outlined in the main text of the pa-
per can be applied. However, the kriging systems may be more
expensive to solve, because they are of higher rank or differ
from layer to layer; however, they will still need to be solved
only once at every trace. The MCMC step, however, is more
problematic. The non-Toeplitz matrices will be more expensive
to factor, and inverses of different rank must be recomputed as
the auxiliary vector u changes with sampling. This will add
significantly to the cost of the method.

Facies with Distinct Covariances. If multiple facies are
present, the variogram model may differ from facies to facies.
In addition, the seismic constraint may differ. For example, the
thickness of each facies, f , of the total number of facies, F ,
might be informed by seismic data, Hf ∼ N

(
H̄f , σHf

)
. In

addition, there may be constraints over sums of sums. For ex-
ample, if facies s is sandstone and m is shale or mudstone, a
constraint on net thickness applies to s only but a gross thick-
ness constraint applies to Hs + Hm. Also, because each facies
may be differently correlated, the prior variance in each facies
could be different. Here, 3D effects are neglected, so the prior
uncertainty for a given facies, σhf , is constant. Finally, note that
stratigraphic order is irrelevant in such a system. We are free to
group all layers of each facies together. Such a system will yield
a block Toeplitz resolution matrix (Multiple Facies with More
Complex Sum Constraints, later). If the constraints are only on
facies thicknesses (not sums of facies thicknesses), at each trace
each facies can be simulated using a distinct chain, because the
overall trace resolution matrix is composed of Toeplitz blocks
along the diagonal only. Although there are F chains, each
block f will be smaller, and for the same total layer count K
the simple multifacies system outlined here could be faster to
simulate than the single facies case.

More Complex Sum Constraints. On the other hand, if the
constraints are on sums of facies thicknesses (sums of sums),
the problem might be approached with hierarchical sampling,
bere addressing a single trace `. For example, with a 4 layer

system, with layers 1 and 3 sandstone, s and 2 and 4 mudstone,
m. Recalling that we are free to permute layer order for con-
venience, the posterior resolution matrix would be (with 3 per-
muted to 2, and 2 to 3):

G =


1

σ2
ts1

+ 1
σ2

Hs

1
σ2

Hs
0 0

1
σ2

Hs

1
σ2

ts3
+ 1

σ2
Hs

0 0
1

σ2
H

1
σ2

H

1
σ2

tm2
+ 1

σ2
H

1
σ2

H
1

σ2
H

1
σ2

H

1
σ2

H

1
σ2

tm4
+ 1

σ2
H


(A-1)

Although a block approach offers appealing efficiency, correct
reproduction of the marginal distributions is not assured. Fur-
ther investigation is needed.

Appendix B: Zero Thickness Conditioning Data
In this paper, the untruncated Gaussian proxy t is kriged, not
the actual thickness h. At simulated traces, t is computed and
stored, and only converted to h for output. Conditioning data
present more of a challenge. If we observe some layer k on
trace ` has h`k = 0, the value of t`k is indeterminate; we only
know t`k ≤ 0. The conditioning data might be decorrelated if
we used a simple but reasonable draw such as

tk = N−1 (r; t̄k, σtk) , r ∼ U [0, P (hk = 0)] (B-1)

where P (hk = 0) is given by Eqn. (1). Instead, we model the
correlation as follows, with a loop over all layers.

1. Find all zero conditioning data in this layer, k; the list of
the locations of zero data is indexed over λ ∈ [0,Λk].The
positive conditioning data in layer k are indexed by d ∈
[0, Dk].

2. Iinitialize all Λk zeroes with random draws, using Eqn.
(B-1).

3. Visit each point λ, forming a kriging system of size
Dk + Λk − 1, that is, composed of all points in this layer
except the current point. In the first iteration, the krig-
ing weights are stored for reuse. Compute the mean and
variance, and draw r ∼ U [0, P (hk = 0)]. P (hk = 0)
is computed using the new mean and standard devia-
tion of tk. The new simulated value tk is the inverse of
N(t̄k, σtk) at cumulative probablity r.

4. Generate a chain and store.
5. Repeat ∀k ∈ 1,K

The stored chains can be used at the beginning in later sim-
ulations of layer thickness. Before simulating any new points,
sets of the zero-thickness conditioning data are drawn from the
stored chain.
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Table 1: Parameters and results for 2-layer simulation
Prior Constraint Posterior

Case t̄1 t̄2 σt H̄ σH t̄1 t̄2 Covariance of t Axial and transversea σt H̄ σH

Tight 3.0 1.0 1.0 4.0 0.1 2.86 1.11
(

0.46 −0.50
−0.50 0.59

)
1.01
0.14 4.00 0.10

Loose 3.0 1.0 1.0 4.0 0.5 2.97 0.97
(

0.53 −0.46
−0.46 0.72

)
1.03
0.44 4.00 0.49

TT t < H̄ 3.0 1.0 0.5 6.0 0.5 3.65 1.66
(

0.16 −0.08
−0.08 0.16

)
0.49
0.28 5.31 0.41

aThese are the square roots of the largest and smallest eigenvalues, respectively, of the posterior covariance matrix.

Table 2: Performance summary for the 3D example (one complete simulation)a

Process Work in secondsb

Kriging work 5.95
Toeplitz solver work 0.22
Total overhead all traces 6.17
Samples, 5000 per trace, all traces 299.20
Cost of example simulation, excluding io 305.37
a Model size, 100× 100× 10; 5000 samples per trace
b Using a 2 GHz Pentium-M (laptop) processor with 1 GB of RAM.
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Figure 1: A trace is a line with composite properties informed by seismic data. It may comprise many layers. Sublayers are not modeled
in this paper. This image is an interpreted outcrop data set.27



12 CONSISTENT DOWNSCALING OF SEISMIC INVERSIONS SPE 103268

Sample thicknesses for 
truncated layers (Gibbs) 

For k set  uk randomly in proportion 
to  [Eqn. (12), Gibbs] 

Propose step t from N 0,G 1( )  and accept 

proportionally to  (Metropolis-Hastings)  

Until
converged

Draw realization from simulated 
posterior and add to the existing data

Done

All
traces

All paths

Visit all traces on path 

Krige means and variances
of all layers at trace  

Generate path 

Figure 2: Flow chart for sequential simulation using
Markov Chain Monte Carlo.
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Figure 4: Simulation results for a two layer case with inaccurate layer thickness but total thickness tightly constrained. H̄ = 4,
t̄ = (3, 1)T , σH = 0.1, and σt = 1; consistent units.
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Figure 5: Simulation results for a two layer case with inaccurate layer and total thicknesses. H̄ = 4, t̄ = (3, 1)T , σH = 0.5, and
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Figure 7: Four Markov chains starting from diverse points tend to migrate toward the most likely region. (a) Convergence is slower for
points that must move along the axis to reach the area of the mode. (b) Results are practically identical for long chains, because the
posterior is unimodal. The prior and constraint data are the same as in Fig. 4.
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(a) Short range, R = 200 (b) Long range, R = 750

(c) Seismic thickness trend, H̄ = 7 + 13x
X

m, R = 350; x = 0 is on the left front (d) Noise varies, σH = 5− 3x
X

; R and H̄ as in (c); x = 0 is on the left front

Figure 8: Simulations on 100 × 100 × 10 cornerpoint grids, areal extent is X = Y = 1000m. Lateral extent is 1 km in x and y, and
25 conditioning traces are used. Unless otherwise noted, H̄ = 20 and σH = 2. All realizations use a Gaussian semivariogram with
Rx = Ry = R, γ(∆) = 1 − exp

[
− (||∆||/R)2

]
, m2. All models flattened on the topmost surface. Range, thickness, and standard

deviation are in m. 5× vertical exageration for all figures. Black lines in (d) are conditioning traces.


