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Summary 
 
Seismic data mining is part of an interactive processing and 
interpretation workflow.  The extraction of information will 
often have the prerequisite of picking reflection events.  
Methods that aid in automatically extracting information are 
required when handling large volumes of data.  Migrated 3-D 
seismic data in prestack form (which includes the offset 
dimension) creates a 4-D hyperspace.  An algorithm for 
tracking prestack reflection events in that hyperspace will be 
presented.  The algorithm combines a range of techniques 
including supervised learning.   
 
Results of automated picking will be presented for migrated, 
prestack, field 3-D data.  The algorithm was able to track a 
nominated reflection event in prestack hyperspace from a 
single seed pick.  The results are superior to those produced 
using a 2-D gather-based approach and a correlation 
autopicker. 
 
A small number of manual picks are used to train a 
probabilistic neural network, which assigns each sample an 
event probability.  These probabilities are updated using a set 
of flow features that propagate seed picks through the 
hyperspace.  Flow features constrain possible picking 
locations based on inter-relationships with nearby picks and 
event probabilities in 4-D.  The combination of the global 4-D 
event probability distribution and localised 4-D flow feature 
updates, creates a highly constrained algorithm.  Evolution of 
a picked event is controlled by quantitative assessment of 
previously made picks.  The algorithm provides a quantitative 
measure of the reliability of each pick. 
 
Introduction 
  
Interpretation involves integrated induction, reasoning, 
judgement of contrary evidence and decision-making.  
Attempts to automate these attributes have been applied in 
many areas of the seismic workflow.  Automation attempts to 
mimic the logic of human interpreters using numerical 
processing algorithms.  As sophisticated techniques 
(including pattern recognition, expert systems, artificial 
intelligence and multidimensional image analysis) continue to 
develop, so to does the success of automation.  However, for 
most applications completely unsupervised processing is not 
yet possible, as it is difficult for automatic methods, that are 
not subjective, to cope with all the complexities of nature.  

The compromise is interactivity.  Automation can be 
considered as minimisation of this human interaction.   
 
Following the advent of 3-D seismic surveying the 
geophysicist is routinely faced with processing and 
interpreting large volumes of data.  The quantity of data 
precludes this from being a manual process.  As a result, 
manual interpretations become time consuming, tedious and 
less constrained, and may be limited by the dimensionality 
and dynamic range of data displays. 
 
Interactive processing requires the extraction of relevant 
information from the seismic recordings (such as timing of 
events or trace attributes).  Velocity analysis and tomography, 
for example, require the picking of prestack reflection events.   
 
The automatic picking method presented here is applied to 
migrated, prestack data for tomographic velocity model 
updating.  The migrated, prestack data forms a four-
dimensional (4-D) hypervolume or hyperspace.  A sample in 
this space is termed a hyxel (Lutolf et al., 2002), analogous to 
the voxel in 3-D and is indexed by three spatial coordinates 
(being x, y, z of, the common image point (CIP) location) and 
an offset coordinate (angle of incidence at the CIP in this 
case). 
 
Glinsky et al. (2001) proposed an algorithm for automatic 
prestack event picking using a probabilistic neural network 
(PNN).  The applied research discussed here is an extension 
to this algorithm.  Focus will be given to the tracking of 
events in prestack hyperspace using flow features, which act 
to constrain the trend of a surface as it is picked.  A small 
subset of manual picks is used to train a PNN, which assigns 
each hyxel with an event probability.  This serves as a prior 
probability that the hyxel should be picked as a reflection.  
From nominated seed picks a series of flow features are used 
to update these priors and predict the location of the next pick 
in 4-D.  These predictions are combined stochastically to 
make the final pick.  A region growing method (that 
quantifies pick reliability) controlled by the PNN event 
probabilities of previously made picks is employed.  This 
ensures that, whenever possible, picks with greater certainty 
are made prior to picks with less certainty. 
 
Autopicking in the prestack domain is complicated by a low 
S/N ratio (compared to stacked data).  The combination of 
acquisition geometry and subsurface structure can produce 
moveouts that do not follow hyperbolic curves.  Also 
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interference from coherent and incoherent noise can lead to 
loop skipping which must be corrected manually.   
 
This applied research has novelty over past work (Tinivella, 
1998; Di Nicola-Carena, 1999; Zamorouev, 1999).  This 
includes considering migrated prestack data as a hyperspace, 
the stochastic use of flow features to propagate picks in this 
hyperspace and the quantification of pick reliability using a 
PNN. 
 
Method and Results 
 
We apply the method to a prestack, depth-migrated 3-D data 
set comprising 2891 common image gathers with 15 offsets 
from 4° to 32° incrementing by 2°.  The migration algorithm 
outputs a sub-hyperspace of prestack data around the horizon 
under analysis.  The sub-hyperspace comprised of 300 depth 
samples, which equates to 13,000,500 hyxels. This depth 
window was centred on a post stack pick of the horizon, 
incorporating 3-D geological structure into the algorithm. 
Autopicking a nominated horizon was initialised with a single 
seed pick. 
 
Hyxel Classification 
A training set of 395 manual picks was created.  This equates 
to less than one pick per seven gathers.  After training the 
PNN produced a 98% correct classification result with respect 
to the training picks.  For details on the implementation of the 
training and classification phase the reader is referred to 
Glinsky et al. (2001).   
 
Flow Features and Propagation Mechanism 
The extents of a local event probability region (or cloud) are 
tracked in 4-D from a seed pick based on a user defined event 
probability threshold.  Only hyxels with probabilities greater 
than the threshold are kept in the cloud. The range of possible 
picks for an event is the 1-D extent of this cloud on the trace.  
The probability of each sample in this range is updated by a 
set of flow features, which independently assign an event 
probability to each sample in the 1-D cloud. The flow features 
are presented below. 
 
1) The PNN event probabilities derived from training and 
classification. 
2) The wavelet position flow feature assigns probabilities 
based on the difference between the position of a nearby pick 
on the seismic wavelet as calculated using a combination of 
the first and second derivatives of amplitude with respect to 
depth.  A sample with a difference of zero would be assigned 
a probability of 1.0. This feature assumes that as an event is 
tracked from trace-to-trace, nearby picks will have a similar 
position on the seismic wavelet.   
3) The pick flow feature predicts the location of a pick based 
on the trend of nearby picks.  The further away from this 
predicted location the lower the assigned probability. 
4) The cloud flow feature predicts the location of a pick based 
on the trend of the event probability cloud.  The further away 

from this predicted location the lower the assigned 
probability. 
5) The correlation flow feature uses conventional cross 
correlation to assign probabilities. 
 
These features attempt to replicate the thought processes of an 
interpreter using numerically justifiable procedures.  When 
making a pick an interpreter will consider, 

1. the phase he/she is picking (e.g. a trough), 
2. the trend of nearby picks, 
3. the trend of the wavelet package around the picks, 
4. the waveform similarity between traces. 

The use of flow features combines all of this information into 
a single best estimate that is constrained in 4-D. 
 
Flow features are calculated in each direction (defined by a 
change of one coordinate only) around a trace to be picked.  
In prestack hyperspace this equates to six possible directions 
(±x, ±y, ±offset).  All available predictions are combined to 
produce a final set of updated probabilities for the 1-D cloud 
on the trace to be picked. The maximum value, selected using 
cubic spline interpolation, is the next pick.  Flow features 
were given equal weightings in this case. 
 
All adjacent traces around a seed are picked in order of 
decreasing pick reliability.  Each time a new pick is made 
relevant flow feature predictions are recalculated to take 
advantage of this new information.  When all adjacent traces 
around a seed have been picked a new seed is selected based 
on its reliability rank. As soon as a seed with a higher ranking 
becomes available it will be used to generate new picks.  In 
this way the propagator will preferentially pick areas where 
confidence is high.  This increases the chance of convergence 
in areas where confidence is low; as they can be constrained 
using previously made picks.   
 
Picking Results 
Figure 1 depicts selected gathers highlighting the range of 
moveouts present in the data.  No model assumption is made 
with respect to moveout during the picking procedure.  The 
evolution of the picked prestack reflection surface is shown in 
Figure 2. Picks are shown at five stages during the 
propagation for three different offsets over the entire survey 
area.  The picked surface was generated from one seed pick. 
The corresponding pick reliabilities are shown in Figure 3.  
Figure 4 compares picks made with this algorithm to picks 
made using conventional correlation.  Figure 5 compares the 
algorithm with a 2-D gather-based version of a similar 
algorithm.  By constraining picks in 4-D loop skipping is 
avoided and smooth, horizon-consistent picks are produced. 
 
Conclusions 
 
Migrated prestack seismic data forms a 4-D hyperspace.  The 
stochastic combination of a set of flow features provides a 
balanced pick-predicting algorithm, which is globally 
constrained by the extent of event probability clouds, 
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generated by a PNN.  The PNN event probability is a useful 
measure of pick reliability and can be used to quantitatively 
drive the evolution of the picked reflection surface in prestack 
hyperspace.  A prestack reflection event was accurately 
picked in 4-D starting from a single seed pick.  The algorithm 
managed a varying S/N ratio and non-hyperbolic moveout to 
produce a smooth, horizon-consistent surface with no loop 
skipping. 
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Figure 2. Evolution of the picked reflection event in prestack hyperspace.  Areas that have not been picked are shown in white.
The picked surface grows in 4-D based on a quantitative assessment of previously made picks. 
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Figure 1. A range of residual moveout trends have been accurately picked.  This includes non-hyperbolic trends (B). 
Autopicked events are shown in red.  
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Figure 3. Quantitative assessment of picking results.  Picks with the highest quality ratings are picked preferentially.  Unpicked 
locations are shown in white. A threshold of 0.5 has been used.  Note the conformance of the probabilities to the stratigraphy in 
this case. 
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Figure 4. Comparison between hyperspace propagation using flow features and correlation autopicking results for two constant 
offset lines.  The correlation autopicker has produced loop skipping.  The 4-D constraints enforced by the propagator avoid this 
problem and track the event despite the varying signal-to-noise ratio. 
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Figure 5. Comparison between 2-D gather based (1) 
and hyperspace propagation (2) autopicking results 
for a single offset (32°).  
 
A:  Loop skipping between gathers is removed.  
B:  Smooth picking trend (horizon consistent). 
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