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Why a sparse representation of the Earth?

* Discontinuities are
commonly observed
(changes in depositional
style, lithology,
unconformities....)

* Seismic reflections are a
response to discontinuities
(relative to seismic support
scale) in impedance.




Sparse Spike Inversion

Sparse-spike inversion removes the effects of the source wavelet from
seismic data to reveal reflective interfaces, and is regularized (L1) such
that it produces a minimal set of reflective interfaces.

The sparse-spike inversion technique employed herein is based on the

groundbreaking work of Daubechies (2003) - proven convergence to
norm.
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Noise-thresholding Sparse-Spike Inversion

Debauchies provided Minimize:

a method for linear f=IW(t)*Ry(t) = SE)* + AIR|*
inverse problems where
the solution has a
sparse representation
on a pre-assigned
orthonormal basis.

(L2 Attachment with L1 Regularization)

Algorithm:

1) L2 Optimization Step
Amounts to repeated
iterations of gradient
descent and soft where u = 1/max (|W(w)|?)
thresholding.

gi =R+ puW(w)* (W(w) * Rj(w) — S(w)), (Fourier Domain)

2) Noise Thresholding — L1 Regularization

gy =T ifg©)>T
F(gt)) =39@®)+T if g(t) <T,where T = Au/2 (Time Domain)

0 iflg®I<T

Rinse and repeat until convergence.
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Limitations to Application of Noise
Thresholding Sparse-Spike

Method requires a good estimate of the wavelet.

Requires a good estimate of the noise.

— The trade-off term (A) that dictates the sparsity must be
calibrated.

f = W) *R(t) - S()|? + AR
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Bayesian Wavelet Estimation

Delivery (CSIRO) waveletExtractor  Matching Synthetic to Seismic

Uses seismic data, logs and

checkshots (single or multiple wells). sy 70 i L.
T [ S
Searches for the most-likely wavelet - il f
within a range of possible: : o s
— Registrations (time-depth model) 3 =t
— Well-positions/deviations - ot
— Wavelets m ol
— Noise i ot
Reports the most-likely model with 8 b ot
uncertainty. i =t
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Blocking the Model: Model Selection

Motivation:

We would like a model of
sufficient complexity to
adequately describes observed
data, but not so complex so that
we fit noise, waste resources...

Selecting the appropriate model
complexity provides the insight
into how to optimize
regularization of our sparse-spike
inversion.
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Scale-Space Segmentation
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Scale-Space segmentation is an
edge detection method often
used in image processing and
computer vision.

A scale-space is made by
convolutions of successively
larger support-scale (o) Gaussian
wavelets with the data.

The 1st derivative provides the
modulus, and the zero crossing-
points of the 2nd derivative
provides the inflection points.
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Scale-Space Segmentation: Seismic Analogy

Freq ¢=120.0 Hz Freq ¢=100.0 Hz

Analogous to seismic convolution
model:
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Segmentation without Localization
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Cut of frequency is the frequency at which the amplitude is cut in half.
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Localization
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As the support scale of the
scale-space becomes
larger, the location of the
inflection points drift.

Localization is the
procedure of placing the
inflection points back to the
high resolution points.
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Selecting the Appropriate Support Scale
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The appropriate
support scale is
dictated by the
bandwidth of the
signal above noise.
Too much smoothing
loses blocks
necessary for fitting
the model.

Too little smoothing
provides the freedom
to fit noise.
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Example of Blocking Scale

Density Vp Vint Vs Synthetic/Seismic Density Vp Vint Vs Synthetic/Seismic

125 Hz Scale R=0.965, RMS noise=557. 65 Hz Scale R=0.967, RMS noise=558.
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Calibration of Sparse-Spike
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Impedance Profile
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Summary/Conclusions
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Novel sparse-spike algorithm with proven convergence.

Scale-space representation of impedance allows for
efficient upscaling of logs.

Quantitative estimates of signal bandwidth above noise
dictate model complexity.

Sparse-spike inversions reconcilable with upscaled well
logs.

Comparable thin-bed resolution to other techniques with a
thin-bed prior.
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