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Summary 
 
We demonstrate an innovative inversion technique for 
providing a discontinuous representation of Earth 
reflectivity, consistent with the seismic bandwidth above 
noise, with proven convergence to the global minima.  We 
also demonstrate a complementary approach for estimating, 
from well log data, the seismic wavelet and bandwidth 
above noise required in parameterizing the inversion. 
 
Introduction 
 
It is not uncommon to see rock outcrops with sudden 
changes in rock character, or to see continuous changes that 
at the scale of a seismic wavelet (10’s to 100’s of meters) 
are effectively a discontinuity in the rock properties.   
Inspired by these insights, a common objective is to inverse 
model, or deconvolve, seismic data to recover the 
discontinuities of the Earth, including by sparse-spike 
inversion (e.g. Debeye and Van Reil, 1990, and Barrodale 
and Roberts, 1973).  The need for a sparsity constraint 
within the minimization function of this inverse problem 
makes it a nonlinear optimization problem, which leads to 
problems in converging to the global minima that require 
considerable constraints to converge to an acceptable 
solution.  Daubechies et. al. (2003) has introduced a 
method for solving this class of problems with proven 
global convergence.  Despite global convergence of this 
method, accurate parameterization of the model is needed 
to get solutions consistent with the real Earth. 
 
Theory and Methods 
 
Typical seismic inversion is applied to post-migrated data, 
which dictates how we model the seismic data and noise.  
The majority of seismic data is migrated with a weak-
scattering and stationary wavelet assumption that does not 
consider effects such as internal multiples, surface waves or 
dispersion.  Considerable effort is often invested into 
arresting noise that isn’t consistent with this model, without 
degrading the integrity of the desired signal.  Therefore, the 
seismic model used in our inversion also assumes a weak 
interaction between reflectors that allows us to simply 
express seismic data and reflectivity with a convolutional 
model expressed as, 
 
𝑆 𝑡 = 𝑊 𝑡 ∗ 𝑅 𝑡 + 𝑛(𝑡),    (1) 
 
where S(t) is the seismic signal, W(t) is the seismic 
wavelet, R(t) is the reflectivity series and n(t) is the noise.  
In actual practice, multiples and processing errors are not 
completely removed, which introduces noise correlated to 

the model.  Special care must be taken to define noise 
levels and limit model parameters in such a way as to avoid 
fitting coherent noise, which we address later on.   
 
The inverse problem is to recover R(t) from the seismic and 
source wavelet by searching for models of R(t) that 
minimize the norm of the observed seismic and the 
proposed synthetic seismic.  In the frequency domain it is 
easy to see that equation 1 is actually a linear problem.  For 
an inconsistent set of linear equations, which arise when a 
system is noisy or the wavelet is not well determined, 
regularization is usually needed to find a stable solution to 
the inverse.  In the typical L2 norm case, the minimization 
function becomes, 
 
𝑓 = 𝑊 𝑡 ∗ 𝑅 𝑡 − 𝑆 𝑡 ! + 𝜆|𝑅|!, (2) 
 
where λ is the weighting term for the regularization.  In a 
Bayesian sense, the L2 regularization term implies a 
Gaussian model covariance (Tarantola, 2005), and is 
equivalent to a prior smoothing constraint that essentially 
removes any sharp discontinuities from the resulting 
inversion as λ increases to allow convergence to norm.  An 
alternate regularization to the problem that doesn’t result in 
a smoothed representation of the system is to use a L1 
norm regularization term.  The L1 norm regularization 
implies a exponential model covariance (Tarantola, 2005), 
and promotes a sparse and sharp representation of the 
solution,   
 
𝑓 = 𝑊 𝑡 ∗ 𝑅 𝑡 − 𝑆 𝑡 ! + 𝜆|𝑅|!. (3) 
 
This functional (equation 3) is a mixed norm, with L2 on 
the model discrepancy and a L1 on the regularization, that 
implies a Gaussian error model (L2), while the L1 enforces 
that the model of reflectivity has a sparse-spike 
representation. 
 
Innovative Sparse-Spike Inversion 
 
We are utilizing a soft iterative thresholding technique for 
solving linear inverse problem with a sparsity constraint, 
first proposed by Daubechies et. al. (2003), and first 
applied to seismic by Mallat (person communication, 2005) 
and Dossal and Mallat (2005).   While solving a set of 
linear equations that are naturally diagonal in an 
orthonormal basis with L1 regularization is relatively 
straight forward (e.g. thresholded SVD), the more general 
inversion problem with a L1 regularization (equation 3), 
such as sparse-spike deconvolution, is actually a set of 
coupled non-linear equations (Daubechies et. al. 2003), for 
which convergence to norm is not guaranteed.  The ground- 



 
Figure 1.  An example of application of the noise-thresholding sparse-spike inversion, (left) with the original migrated seismic data, (center) the 
inverted sparse-spike series, and (right) the synthetic seismic recovered from the wavelet and the sparse-spike series. Note that the recovered 
seismic (right) closely matches the seismic data for more significant events while removing the background noise. 
 
breaking insight by Daubechies et. al. (2003) was to bypass 
this problem, by using surrogate functionals that 
orthogonalizes the problem. These surrogates are relatively 
simple to minimize via an iterative convex optimization 
method with proven convergence to norm.  Therefore, 
converging to local minima does not plague this technique, 
nor does it rely on local well log constraint to find an 
acceptable solution. 
 
In more simple terms, this technique uses a soft 
thresholding rule to eliminate wavelet coefficients (i.e. 
spikes) that fall below noise levels while iterating towards a 
sparse set of coefficients that fit observed seismic data.  
The end result is a model that has preserved reflections 
resolvable by the bandwidth of the seismic above noise - 
without smoothing (Figure 1).  In order for this technique 
to fulfill its potential, accurate estimates of both the source 
wavelet and the proper noise thresholding level are 
required.   These requirements can be met with a wavelet 
extraction technique that estimates noise levels from 
downhole log data co-located with the seismic data. 
 
Wavelet Extraction and Noise Estimation 
 
We utilize the open-source software WaveletExtractor 
(Gunning and Glinsky, 2006) to make estimates of the 
wavelet, noise, and time-to-depth registration, with 
uncertainty. This Bayesian inverse method constrains 
possible wavelet and noise levels using well log data, 
seismic check-shots, and the effective bandwidth of the 
signal.  Only parsimonious wavelets, of minimal length and 
fitting coefficients, are selected, which avoids excessive 
side-lobes or details that may fit the signal from short-path 
internal multiples or processing errors within the coda of 

the reflected signal.   The noise is estimated simultaneously 
during the inversion process and depends on the mismatch 
between the synthetic seismic generated from the log 
derived reflectivity and the extracted wavelet against the 
observed seismic. 

 
 The reflectivity series, for deconvolving the source from 
the seismic, is modeled using linearized approximations to 
Zoeppritz equations.  The seismic properties for 
parameterizing these equations are calculated from blocked 
and upscaled log properties (p-wave velocity, s-wave 
velocity, and density).  The blocking of the logs is done by 
detection of change-points (e.g. Hawkins, 2001) within the 
data, and has no explicit sense of the support scale of the 
seismic data.  The blocking scheme used in the 
WaveletExtraction software errors on the side of over-
parameterizing the reflectivites to get the most-likely 
wavelets without the excessive cost of an exhaustive model 
selection procedure.  This over-parameterization of the 
reflectivities provides the inversion with the potential to fit 
noise of similar signal to the desired data (e.g. long-path 
multiples or processing artifacts) and therefore gives a 
biased estimate of the actual noise limits.  Since we are 
interested in finding accurate estimates of the bandwidth of 
the seismic signal above noise, we have designed an 
external blocking and model selection algorithm that 
interfaces with WaveletExtractor’s text input and output 
files. 
 
Blocking and Model Selection 
 
In a model selection procedure, we desire a model that is of 
sufficient complexity to adequately describe the observed 
seismic data, but not so complex that it has the potential to 
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fit noise.  Where noise, in this case is any signal not 
consistent with the assumptions of our model – namely 
multiplies or processing artifacts. 
 
A formal model selection technique that considers the 
entire range of the number and location of reflectors is 
computationally prohibitive.  Therefore heuristic methods 
such as a statistical change-point model or simply blocking 
at a predetermined scale (e.g. ¼ wavelength) are more 
commonly used.   These approaches either do not have an 
explicit consideration of the seismic support scale, or are 
not they physically consistent with seismic.  A blocking 
method called scale-space segmentation has a direct 
consideration of support scale and is reconcilable with a 
physical model of the seismic response to reflectivity.  
Scale-space segmentation (Witkin 1984), or diffusion 
filtering (e.g. Mallat , 1999), is an edge detection method 
useful for recovering sharp edges in the presence of 
significant noise. 
 
Scale-Space Blocking 
 
Scale-space segmentation scales, or low pass filters, a time-
series via convolution with a Gaussian wavelet, given by: 
 

𝑊 𝑡,𝜎 = !
! !!

𝑒
!(!!!)!

!!! ,  and 𝜎 = !
!!"

,  
 
where σ is the support scale of the wavelet.  This provides a 
scale dependent representation of the time series to be 
blocked.  The zero-crossing points of the second derivative 
with respect to time correspond to the extrema, or 
discontinuities, of the scaled data.   The areas in-between 
the discontinuities correspond to smoothly varying parts of 
the series.  As one goes up in scale to coarser and coarser 
representations of the data, the zero crossing points will 
decrease in number and drift in position.  To compensate 
for the drift, the zero crossing points are “localized” to the 
originating point by following contours of the zero-crossing 
points from the scale of interest back to Nyquist.  
 
The scale-space process has a seismic modeling analogy 
that instructs how to condition the log data for 
segmentation.  If one takes half the natural log of seismic 
impedance that has been interpolated into time by a 
velocity function, the first derivative of the scale-space 
filtered impedance gives linearized reflectivity, 
 

𝑅 𝑡 =
1
2
𝑑
𝑑𝑡
ln(𝐼𝑚𝑝), 

 
and when convolved with the Gaussian wavelet produces a 
scaled synthetic seismic response, 
 
𝑆 𝑡,𝜎 = 𝑊 𝑡,𝜎 ∗ 𝑅(𝑡). 

The second derivative then simply corresponds to the 
maxima of the salient reflections at that scale, and the 
localization procedure places those reflection points at their 
unfiltered positions, which defines block edges.  The 
segmented blocks are then filled with a Backus average of 
the seismic properties extracted from logs for 
parameterizing the reflection series used by 
WaveletExtractor.  Using this blocking procedure reduces 
the expensive task of selecting the location and number of 
block edges to a simple task of determining the proper scale 
that represents the seismic data. 
 

 
Figure 2. Scale-space blocked impedance profiles for various 
scales.  The blue is the acoustic impedance calculated from 
wireline logs.  The red is the scaled, or low pass filtered, version of 
the original data, and the black lines represent the blocks with 
Backus averaged acoustic impedance. 
 
Finding the Support Scale 
 
Starting at the highest frequencies (smallest scale of the 
scale-space), we run the WaveletExtractor to estimate the 
wavelet and noise for the corresponding upscaled and 
blocked data.  The procedure is iterated towards the lowest 
frequencies while estimating the goodness of fit.  The 
tradeoff between model complexity and fit is quantified 
with the Akaike information criterion (AIC) that considers 
both the χ2 metric and the number of parameters 
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(reflections).  A plot of the AIC as a function of the 
support-scale cutoff frequency is given below (figure 3). 
 

 
Figure 3.  Akaike information criterion as function of cutoff 
frequency.  The best trade-off was interpreted as 50Hz.  
 
One could choose an overly conservative model that filters 
out all coherent noise, or conversely choose an overly 
parameterized model that reveals all detectable reflection 
with a significant number of coherent noise events.  The 
knee point (~50Hz) effectively gives us the optimal trade-
off between resolving real reflections and coherent noise. 
 

 
Figure 4.  Plot of both the sparse-spike reflectivity (blue) and the 
scale-space blocked reflectivity (red).   
 
This scale-space block reflectivity provides the model to 
which the sparse-spike is calibrated.  The mean noise level 
and sparsity estimated from the WaveletExtractor, that used 
optimal selected model (50Hz), is used as prior information 
to calibrate the thresholding of the sparse-spike inversion.  
Comparisons between the sparse-spike and scale-space 
reflections show excellent correlation (Figure 4), 
confirming that the inversion is identifying discontinuities 

within the limits of the support scale of the seismic data.  
This supports the argument that not only is the inversion 
converging to global minima, but it also exhibits accuracy 
when the wavelet and noise have been properly estimated. 
 
Discussion 

The scale-space segmentation process and search for the 
appropriate support scale during wavelet extraction 
provides insights into the noise-thresholding sparse-spike 
inversion results.  The sparse spike inversion method here 
is closely related to another denoising method commonly 
called wavelet shrinkage (Chambolle et al, 1998).  A 
demonstrated equivalence between scale-space filtering and 
wavelet shrinkage, for the case of Haar wavelets, has been 
provided by Mrázek et. al (2003).  This provides insight 
into the correlation of reflectivities derived from the scale-
space blocking and the noise-thresholding sparse-spike 
inversion, where only a single noise-thresholding term is 
adjusted.  Additionally, the sparse-spike algorithm from 
Daubachies work has been shown to have a separation 
resolution, the distance between two reflections above 
noise, that depends only on the support scale of the seismic 
signal above noise (Dossal and Mallat, 2005).  So, the 
minimum separation resolution of the sparse-spike should 
be approximately the same as the selected scale-space 
blocked reflectivity series.   
 
The blocking and model selection procedure discussed 
herein provides a method to evaluate how to register PP 
and PS seismic data together.  Synthetic studies of PP and 
PS reflectivity show that, while not equivalent in AVO 
pattern, there exists a strong spatial correlation in expected 
reflection events.  This would suggest that most events in 
PP and PS data could be registered if one has a good handle 
on the Vp/Vs ratio.  However, PP and PS seismic data 
typically have differing effective support scales because 
one component (typically PS) has higher noise levels and 
lower bandwidth.  By independently applying the blocking 
and model selection procedure to both PP and PS data sets, 
one can evaluate the reflections that are common to both 
scales.  This provides a map of which horizons one can 
confidently register between the two. The sparse-spike 
deconvolution of the respective data sets can then be used 
to register these common horizons away from the well. 
 
Conclusions 
 
We have reviewed the application of a technically superior 
sparse-spike inversion technique with proven global 
convergence. We have demonstrated how to objectively 
calibrate this inversion based on a model selection 
procedure that uses scale-space blocking of log data.   
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