Stochastic Inversion of Seismic PP and PS Data for Reservoir Parameter Estimation

Jinsong Chen
Lawrence Berkeley National Laboratory

Michael E. Glinsky
ION Geophysical

2013 SEG Annual Meeting, Houston, Texas
Outline

- Background
- Hierarchical Bayesian model for joint inversion
- Synthetic case study based on field data
- Summary and conclusions
Delivery: Open-source Java software for inversion of seismic PP data

- Each layer is modeled as a mixture of permeable (sand or carbonate) and impermeable rock (shale or mudstone).

- The ratio of permeable to impermeable rock is determined by net-to-gross (NG).

- Each permeable rock may include one of four fluid types (oil, gas, brine, or low-saturation gas).

(Gunning and Glinsky, 2004)
Delivery: Data and unknown variables

- **Data**
 - PP traces as functions of incident angles (S_{pp})
 - PP time registration with uncertainty (T_{pp})

- **Unknown variables**
 - PP travel time to each interface (t_1, t_2, \ldots, t_n)
 - Permeable rock: Porosity, P-wave and S-wave velocity.
 - Impermeable rock: Density, P-wave and S-wave velocity.
 - Fluid: fluid density and P-wave velocity, fluid saturation.
 - Other unknowns: net-to-gross, layer thickness, etc.
Extension of Delivery for inversion of PP and PS data

- Add two types of seismic data:
 - PS traces in the PS time domain (S_{ps})
 - PS time registration (T_{ps})

- Add two types of unknown variables:
 - PS travel time (t_{ps})
 - PS reflectivity (R_{ps})
Dependent relationships among variables and data (graphical model)

Reservoir or layer parameters (α)

- T_{pp}
- T_{ps}
- S_{bb}
- S_{pp}
- d
- R_{pp}
- v_p
- v_s
- ρ
- t_{pp}
- t_{ps}
- R_{ps}
Hierarchical Bayesian model

\[f(\alpha, t_{pp}, t_{ps}, d, v_p, v_s, \rho, R_{pp}, R_{ps} \mid S_{pp}, S_{ps}, T_{pp}, T_{ps}, D_b) \]

\[\propto f(S_{pp} \mid t_{pp}, R_{pp}) \quad \text{Likelihood of PP data} \]
\[\times f(S_{ps} \mid t_{ps}, R_{ps}) \quad \text{Likelihood of PS data} \]
\[\times f(T_{pp} \mid t_{pp}) \quad \text{Likelihood of PP time registration} \]
\[\times f(T_{ps} \mid t_{ps}) \quad \text{Likelihood of PS time registration} \]
\[\times f(D_b \mid d) \quad \text{Likelihood of depth data} \]
\[\times f(d \mid t_{pp}, v_p) \quad \text{Linkage between PP time and depth} \]
\[\times f(R_{pp}, R_{ps} \mid v_p, v_s, \rho) \quad \text{Linearized Zoeppritz equations} \]
\[\times f(t_{ps} \mid t_{pp}, v_p, v_s) \quad \text{Linkage between PS and PP time} \]
\[\times f(v_p, v_s, \rho \mid \alpha) \quad \text{Rockphysics models} \]
\[\times f(\alpha)f(t_{pp}). \quad \text{Priors on parameters and PP time} \]
\[R_{pp}(\theta) = \frac{1}{2} \left(\frac{\Delta v_p}{v_p} + \frac{\Delta \rho}{\rho} \right) \]
\[+ \frac{1}{2} \left[\frac{\Delta \rho}{v_p} - 4 \left(\frac{v_s}{v_p} \right)^2 \left(\frac{\Delta \rho}{\rho} + 2 \frac{\Delta v_s}{v_s} \right) \right] \theta^2 + O(\theta^4), \]
\[R_{ps}(\theta) = -\frac{1}{2} \left[\frac{\Delta \rho}{\rho} + 2 \left(\frac{v_s}{v_p} \right) \left(\frac{\Delta \rho}{\rho} + 2 \frac{\Delta v_s}{v_s} \right) \right] \theta + O(\theta^3). \]

Where \(v_p = (v_{p1} + v_{p2}) / 2, \ v_s = (v_{p1} + v_{p2}) / 2, \ \rho=\left(\rho_1+\rho_2\right)/2, \)
\(\Delta v_p = v_{p2} - v_{p1}, \ \Delta v_s = v_{s2} - v_{s1}, \) and \(\Delta \rho = \rho_2 - \rho_1. \)
Linkage between PP and PS travel time

- Find an interface on which both PP and PS have strong reflection.
- Use the PS time on the interface as the reference to calculate PS time for other interfaces.
- Relative PP and PS time for a given layer is calculated by

\[
\Delta t_{ps} = \frac{1}{2} \left(1 + \frac{v_p}{v_s} \right) \Delta t_{pp}
\]
Floating-grain rockphysics model by Gunning and Glinsky (2007)

\[\nu_p = a_{vp} + b_{vp} Z + c_{vp} X + \epsilon_{vp}, \quad \epsilon_{vp} \sim N(0, \sigma_{vp}^2) \]
\[\nu_s = a_{vs} + b_{vs} \nu_{vp} + \epsilon_{vs}, \quad \epsilon_{vs} \sim N(0, \sigma_{vs}^2) \]
\[\rho = a_{\rho} + b_{\rho} \nu_{vp} + c_{\rho} X + \epsilon_{\rho}, \quad \epsilon_{\rho} \sim N(0, \sigma_{\rho}^2) \]

where \(Z \) is the loading depth or other variable representing the effect of pressure, and \(X \) is floating grain fraction. All the coefficients and variance are obtained from fitting of borehole logs.
Borehole logs from Gunning and Glinsky (2007)

(a) V_p (km/s) vs. Depth TVD
(b) V_s (km/s) vs. Depth TVD
(c) Density (g/cc) vs. Depth TVD
(d) V_p/V_s vs. Depth TVD
(e) Impedance (MPa) vs. Depth TVD

Upper Pay (Layer-4)
Lower Pay (Layer 6)
<table>
<thead>
<tr>
<th>Geology</th>
<th>Vp (km/s)</th>
<th>Vs (km/s)</th>
<th>Rho (g/cc)</th>
<th>Vp/Vs</th>
<th>NG</th>
<th>Porosity</th>
<th>Floating Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marl</td>
<td>3.67</td>
<td>1.75</td>
<td>2.54</td>
<td>2.10</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt Marl Mix</td>
<td>2.85</td>
<td>1.17</td>
<td>2.38</td>
<td>2.44</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bounding Shale</td>
<td>3.32</td>
<td>1.63</td>
<td>2.50</td>
<td>2.04</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand / Mixing Shale</td>
<td>3.49</td>
<td>1.89</td>
<td>2.39</td>
<td>1.84</td>
<td>0.65</td>
<td>0.187</td>
<td>0.035</td>
</tr>
<tr>
<td>Bounding Shale</td>
<td>3.48</td>
<td>1.76</td>
<td>2.52</td>
<td>1.98</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand / Mixing Shale</td>
<td>3.58</td>
<td>1.97</td>
<td>2.41</td>
<td>1.81</td>
<td>0.65</td>
<td>0.181</td>
<td>0.035</td>
</tr>
</tbody>
</table>
PP and PS reflectivities and seismic data

<table>
<thead>
<tr>
<th></th>
<th>Full PP Stack ($\theta=0^\circ$)</th>
<th>Full PS Stack ($\theta=45^\circ$)</th>
<th>AVO Gradient Stack ($\theta=45^\circ$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-0.1586</td>
<td>0.1347</td>
<td>0.3282</td>
</tr>
<tr>
<td>3</td>
<td>0.1001</td>
<td>-0.1334</td>
<td>-0.2721</td>
</tr>
<tr>
<td>4</td>
<td>0.0040</td>
<td>-0.0697</td>
<td>-0.0882</td>
</tr>
<tr>
<td>5</td>
<td>0.0245</td>
<td>0.0313</td>
<td>0.0187</td>
</tr>
<tr>
<td>6</td>
<td>-0.0096</td>
<td>-0.0542</td>
<td>-0.0571</td>
</tr>
</tbody>
</table>

(Sassen & Glinsky, 2013)
Priors about floating-grain fraction

- **Strong prior**: $X \sim N(0.02, 0.03^2)$, True $X=0.035$
- **Weak prior**: $X \sim N(0.0, 0.05^2)$, True $X=0.035$

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Priors</td>
</tr>
<tr>
<td>Red</td>
<td>Full PP</td>
</tr>
<tr>
<td>Green</td>
<td>Full PP plus AVO gradient</td>
</tr>
<tr>
<td>Blue</td>
<td>Full PP plus full PS</td>
</tr>
</tbody>
</table>

Floating grain fraction

Porosity NG

Strong prior: $X \sim N(0.02, 0.03^2)$, True $X=0.035$

Weak prior: $X \sim N(0.0, 0.05^2)$, True $X=0.035$
Prior about net-to-gross

- **Black**: Priors
- **Red**: Full PP
- **Green**: Full PP plus AVO gradient
- **Blue**: Full PP plus full PS

Strong prior: $NG \sim N(0.6, 0.1^2)$, True $NG = 0.65$

Weak prior: $NG \sim N(0.5, 0.3^2)$, True $NG = 0.65$
Differences between the true values and estimated medians

Net-to-gross

Porosity

Floating-grain fraction

Vs

Vp

Thickness

Density

Normalized Differences

Prior | Full PP | Full PP & AVO | Full PP & PS | All Data

Normalized Differences

Prior | Full PP | Full PP & AVO | Full PP & PS | All Data

Net-to-gross

Porosity

Floating-grain fraction

Vs

Vp

Thickness

Density

Normalized Differences

Prior | Full PP | Full PP & AVO | Full PP & PS | All Data
Probability of small regions around the true values

\[\text{Prob}(\theta \in [0.95\theta^{\text{True}}, 1.05\theta^{\text{True}}] \mid \text{Data}) \]
Summary and conclusions

- We developed a tool to combine PP and PS data by extending ‘Delivery’ to include PS responses and time registration as data.

- The revised codes take full advantage of Delivery in model specification, Markov chain Monte Carlo (MCMC) sampling, and post analysis.

- We applied the codes to a synthetic model based on actual borehole logs. We used a floating-grain rockphysics model to link reservoir parameters to seismic attributes.

- The case study results show that full PS data provide more information than AVO gradient data. Specifically, PS data significantly improve the estimates of floating-grain fraction and porosity.
We thank ION Geophysical for funding and for permission to present this work.

We thank James Gunning from CSIRO for providing help in understanding the Delivery codes.