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Delivery: Open-source Java software for inversion of 
seismic PP data 
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 Each layer is modeled as a mixture of  
permeable (sand or carbonate) and 
impermeable rock (shale or mudstone). 

 The ratio of permeable to impermeable rock is 
determined by net-to-gross (NG). 

 Each permeable rock may include one of four 
fluid types (oil, gas, brine, or low-saturation gas). 

(Gunning and Glinsky, 2004) 



Delivery: Data and unknown variables  

  
 Data 

 PP traces as functions of incident angles (Spp) 
 PP time registration with uncertainty (Tpp) 

 
 Unknown variables  

 PP travel time to each interface (t1, t2, …, tn)  
 Permeable rock: Porosity, P-wave and S-wave velocity. 
 Impermeable rock: Density, P-wave and S-wave velocity. 
 Fluid: fluid density and P-wave velocity, fluid saturation. 
 Other unknowns: net-to-gross, layer thickness, etc. 



Extension of Delivery for inversion of PP and PS data 

 Add two types of seismic data: 

 PS traces in the PS time domain (Sps) 

 PS time registration (Tps) 

 

 Add two types of unknown variables: 

 PS travel time (tps) 

 PS reflectivity (Rps) 



Dependent relationships 
among variables and data 
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Hierarchical Bayesian model 
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PP and PS reflectivities using linearized Zoeppritz equations 
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Linkage between PP and PS travel time 

 Find an interface on which both PP and PS have strong reflection. 

 Use the PS time on the interface as the reference to calculate PS 
time for other interfaces. 

 Relative PP and PS time for a given layer is calculated by   
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Floating-grain rockphysics model by Gunning and Glinsky 
(2007)  
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 of pressure, and  is floating
grain fraction. All the coefficients and variance 
are obtained from fitting of borehole logs.
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Borehole logs from Gunning and Glinsky (2007) 
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Summary of parameters in the six-layer model 

Geology Vp 
(km/s) 

Vs 
(km/s) 

Rho 
(g/cc) 

Vp/Vs NG 
 

Porosity Floating 
Fraction 

1 Marl 3.67 1.75 2.54 2.10 0.00 

2 Silt Marl Mix 2.85 1.17 2.38 2.44 0.00 

3 Bounding 
Shale 

3.32 1.63 2.50 2.04 0.00 

4 Sand / Mixing 
Shale 

3.49 1.89 2.39 1.84 0.65 0.187 0.035 

5 Bounding 
Shale 

3.48 1.76 2.52 1.98 0.00 

6 Sand / Mixing 
Shale 

3.58 1.97 2.41 1.81 0.65 0.181 0.035 



PP and PS reflectivities 
and seismic data 

Full PP 
Stack 
(θ=00) 

Full PS 
Stack 

(θ=450)  

AVO 
Gradient 

Stack 
(θ=450) 

1 

2 -0.1586 0.1347 0.3282 

3 0.1001 -0.1334 -0.2721 

4 0.0040 -0.0697 -0.0882 

5 0.0245 0.0313 0.0187 

6 -0.0096 -0.0542 -0.0571 

PP Wavelet PS Wavelet 

(Sassen & 
Glinsky, 
2013)  
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Priors about 
floating-grain 

fraction 

Strong prior: X~N(0.02, 0.03^2), True X=0.035 

Weak prior: X~N(0.0, 0.05^2), True X=0.035 

  Black: Priors 

  Red: Full PP  

 Green: Full PP 

plus AVO gradient 

  Blue: Full PP 

plus full PS 
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Priors about 
net-to-gross 

Strong prior: NG~N(0.6, 0.1^2), True NG=0.65 

Weak prior: NG~N(0.5, 0.3^2), True NG=0.65 

  Black: Priors 

  Red: Full PP 

 Green: Full PP 

plus AVO gradient 

  Blue: Full PP 

plus full PS 



Differences between the true values and estimated medians  
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Probability of small regions around the true values 
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Summary and conclusions 

 We developed a tool to combine PP and PS data  by extending 
‘Delivery’ to include PS responses and time registration as data. 

 The revised codes take full advantage of Delivery in model specification, 
Markov chain Monte Carlo (MCMC) sampling, and post analysis. 

 We applied the codes to a synthetic model based on actual borehole 
logs. We used a floating-grain rockphysics model to link reservoir 
parameters to seismic attributes. 

 The case study results show that full PS data provide more information 
than AVO gradient data. Specifically, PS data significantly improve the 
estimates of floating-grain fraction and porosity. 
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