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Summary 
 
We develop a hierarchical Bayesian model to invert seismic 
PP and converted-wave (i.e., PS) data for reservoir 
parameters. The model is an extension of the model-based 
Bayesian method by Gunning and Glinsky (2004) with 
converted wave responses and PS time registration as 
additional data and with two-way PS travel time and PS 
reflectivity as additional unknowns. We implement the model 
by revising their open-source software, ‘Delivery’, written in 
Java. We demonstrate the use of the revised codes by 
applying them to two synthetic cases. One is a three-layer 
sand wedge model with variable thickness, and the other is a 
six-layer floating-grain model based on actual field data. The 
case study results show that seismic PS data greatly enhances 
the resolution of seismic data for thin layers, and they provide 
more information on reservoir parameters than far-offset PP 
data. 
 
Introduction 
 
Multicomponent seismic surveying has been used for 
hydrocarbon exploration more than a decade because it can 
capture the seismic wave-field more completely than 
conventional single-element techniques (Stewart et al., 2002). 
Many types of energy conversion may occur when seismic 
waves pass through the underlying earth. However, 
transmitted or multiple conversions generally have much 
lower amplitudes than the P-down and S-up reflection 
(Rodriguez-Saurez, 2000). Consequently, for many 
applications of multi-component seismic data, the use of 
converted-wave or PS images receives much attention 
(Stewart et al., 2002; Mahmoudian and Margrave, 2004; 
Veire and Landro, 2006). 
 
Several obstacles exist currently that make the use of 
converted-wave data, as a routine practice, difficult. The first 
one is the high acquisition cost of collecting multicomponent 
seismic data compared to conventional seismic surveys. The 
second one is that multicomponent data processing is still 
challenging. Compared with P-wave velocity analysis, 
identifying pure S-wave events in multicomponent seismic 
data is much harder (Veire and Landro, 2006). Finally, we 
still do not have good methods to jointly integrate multiple 
seismic data, especially in the sense of joint inversion, 
because PP and PS data are recorded in different time 
domains. This study is an effort to combine seismic PP and 
converted-wave for estimating reservoir parameters using a 
Bayesian hierarchical framework. 
 

We extend the model-based Bayesian method developed by 
Gunning and Glinsky (2004) for inverting seismic AVO data, 
by revising their open-source Java codes (i.e., ‘Delivery’) to 
allow converted-wave responses and PS event time 
registration as additional data. We use the same rock physics 
models and Markov chain Monte Carlo (MCMC) sampling 
strategies as Delivery. Since this study is built on the 
previous work, the subsequent descriptions will be focused 
on the new development and applications, and the details of 
other parts can be found in Gunning and Glinsky (2004). 
 
Method 
 
Hierarchical Bayesian model 
 
We use the same notations as Gunning and Glinsky (2004) 
and assume the subsurface can be divided into n  horizontal 
layers. We consider reservoir parameters at each layer as 
unknowns, which include (1) porosity and net-to-gross (i.e., 
the ratio of permeable to impermeable rock by volume), (2) 
fluid saturation (e.g., brine, oil, and gas saturation), and (3) 
rock physics attributes of permeable and impermeable rocks 
(e.g., P-wave and S-wave velocity and density). For ease of 
description, we let vector α  represent all the parameters 
related to the rock physics model. 
 
We consider effective seismic P-wave and S-wave velocity (
pv  and sv ) and density ( ρ ), and seismic PP and PS 

reflectivity ( ppR  and psR ) as unknowns. They are functions 
of rock physics parameters through suitable rock physics 
models. We consider PP traveltime ( ppt ) as a primary 

unknown, and both layer-thickness ( d ) and PS traveltime (
pst ) can be derived from the PP traveltime and associated 

effective seismic attributes. The data used for inversion 
include seismic PP and PS full-waveforms ( ppS , and psS ) 

and PP and PS event registration time ( ppT  and psT ). If 
available, they include other information from nearby 
boreholes, such as thickness constraints ( bD ). 
 
Figure 1 shows all the unknowns, available data, and their 
relationships, and the dashed rectangle highlights our 
extension to Delivery. Specifically, we add two unknowns 
related to converted wave (i.e., pst  and psR ) and two new 

data (i.e., psT  and psS ). Following the direct graphical 
model, we have the following hierarchical Bayesian model: 
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Equation 1 defines a joint posterior probability distribution 
function of all unknown parameters, up to a normalizing 
constant. The first five terms on the right side of the equation 
are the likelihood functions of available data, which link data 
to unknowns, and all other terms on the right side are the 
prior probability distributions, derived from other sources of 
information. We define all the likelihood functions and prior 
distributions in a similar way to Delivery (see Gunning and 
Glinsky, 2004). In the following, we only describe the new 
development. 
 
PP and PS reflectivities 
 
We use the linearized Zoeppritz approximations (Aki and 
Richard, 1980) to obtain PP and PS reflectivity at an 
interface, which are given below: 
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In equations 2 and 3, 1 2( ) / 2p p pV V V= + , 1 2( ) / 2s s sV V V= + , 

1 2( ) / 2ρ ρ ρ= + , 2 1p p pV V VΔ = − , 2 1s s sV V VΔ = − , and 

2 1ρ ρ ρΔ = − , where ( 1pV , 1sV , 1ρ ) and ( 2pV , 2sV , 2ρ ) are 

P- and S-wave velocity and density in the layers above and 
below the interface. Symbol θ  is the PP incident angle in the 
unit of radius. The PP and PS reflectivities have the fourth 
and third order of accuracy in terms of the incident angle. 
 
Linkages between PP and PS data and event time registration 
 
Traditional methods for joint inversion of PP and PS data are 
primarily based on mapping of PS data to PP time (or domain 
conversion), in which PS data are considered as additional 
seismic stacks. Although this approach is simple to 
implement, it suffers from difficulties, such as wavelet 
distortion (Bansal and Matheney, 2010), because the 
conversion of PS time to PP time needs interval seismic P-to-
S velocity ratios, which are not known a priori. 
 
In this study, we avoid the PP-to-PS domain conversion and 
use PS data directly in the PS time domain. We first pick one 
or more PS events from PS seismograms that have good 
correspondence with the PP seismograms along the same 
profile, and we refer them to as the master PS horizons. In the 

forward simulation, we calculate all the PS times relative to 
the master horizons. 
 
The use of event time registration as data is one of main 
advantages of Delivery as well as the current extension 
because PP event time is directly related to P-wave velocity 
and PS event time directly related to P-wave and S-wave 
velocity. They provide additional information to constrain the 
estimates of P-wave and S-wave velocity beyond the 
reflectivity based PP and PS full-waveforms. 
 
Examples 
 
We use two examples to test the revised codes and to 
demonstrate the benefits of including converted-wave data in 
reservoir parameter estimation. The first example is a three-
layer wedge model with variable thickness, which is similar 
to the one by Gunning and Glinsky (2004) and Puryear and 
Castagna (2008). In the example, we will show how 
converted-wave data help to improve parameter estimation in 
thin layers. The second example is based on actual field data 
given by Gunning and Glinsky (2007) with six layers. We 
will show how converted-wave data help to estimate floating-
grain fraction, which was demonstrated by Gunning and 
Glinsky (2007) to be a difficult parameter to estimate under 
the field conditions. 
 
In both examples, we use the PP and PS wavelets typical of 
those derived from field borehole logs for sparse-spike 
inversion using the method of Gunning and Glinsky (2006). 
The PP and PS wavelets have the peak frequencies of 23 Hz 
and 13 Hz, respectively (see Figure 2). 
 
Three-layer sand wedge model 
 
We use the same three-layer sand wedge model given by 
Gunning and Glinsky (2004) to test the developed method. In 
this model, a sand wedge is pinched out by the surrounding 
shale layers. Based on the PP wavelet given in Figure 2 and 
using the formula from Chung and Lawton (1995), we get the 
PP tuning thickness of 28 m. For this study, we let the sand 
wedge thickness increase from 1/8 to 5/4 of the PP tuning 
thickness with an increment of 1/8 tuning thickness. This 
yields the thickness of 3.5, 7, 10.5, 14, 17.5, 21, 24.5, 28, 
31.5, and 35 m. The true net-to-gross of the sand wedge is 
0.5. For inversion, we set the prior as the truncated normal 
distribution with the true values as mean and 0.5 as the 
standard deviation. The rock physics model used for this 
study is given by Mavko et al. (1998, page 297) based on 
data from Han (1986) for tight-gas sandstones. 
 
We generate synthetic PP and PS data by using equations 2 
and 3 to calculate reflectivity. At the top interface of the sand 
wedge, the reflectivities of the near PP stack (incident angle 
= 6 degrees), the far PP stack (incident angle = 30 degrees), 
and the far PS stack (incident angle = 30 degrees) are 0.0864, 
0.0677, and -0.1003, respectively. At its bottom interface, the 
reflectivities of PP near and far stacks and PS far stack are -
0.0860, -0.0602, and 0.1179. We convolved those 
reflectivities with the given wavelets (see Figure 2) to get 
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seismic full waveforms. Figure 3 shows the synthetic seismic 
data, and we assume those data have Gaussian random noise 
with the standard deviation of 0.005. 
 
Inversion results and analysis 
 
We invert the synthetic data for ten different thicknesses 
using three different sets of data in the inversion. They are: 
(1) only near-offset PP stack, (2) the near and far PP stacks, 
and (3) the near PP stack and the far PS stack. Figure 4 shows 
the medians, 95% predictive intervals, and the true values for 
(a) the net-to-gross (NG), (b) thickness, (c) P-wave velocity, 
and (d) S-wave velocity as a function of wedge thickness. 
The black squares and the dashed lines in each figure show 
the true values and the prior bounds. The red, green, and blue 
lines are the estimates obtained using the only the near PP 
stack, the near and far PP stacks, and the near PP stack and 
the far PS stack. The solid lines represent the estimated 
medians and the dashed lines represent 95% predictive 
intervals. 
 
Comparing the estimated NG, and the P-wave and S-wave 
velocities with their corresponding true values, we found that 
when using only the near PP stack data, the estimated 
medians are very close to their true values for thickness 
greater than 17.5 m (i.e., 62.5% of the tuning thickness) but 
the estimates have significant uncertainty. By adding the far 
PP stack data, the estimated medians have good agreements 
with the true values as long as the wedge thickness is greater 
than 10.5 m (i.e., 37.5% of the tuning thickness). By 
replacing the PP far stack with the PS far stack, the estimated 
medians are unbiased for thicknesses greater than 7 m or 
even less. PS data is better at estimating thicknesses and NG 
of thin layers. 
 
From this example, we can see that the use of converted wave 
significantly improves the resolution of parameter estimation. 
The possible reasons may include (1) the PS data extending 
the frequency range of data, (2) the PS wavelet providing 
additional information, and (3) the PS event time registration 
providing additional information. 
 
Six-layer floating-grain model 
 
We use the example B in Gunning and Glinsky (2007) as the 
second test case. The example is based on actual field data 
and has six layers with the fourth and sixth layers being oil 
reservoirs. A general layer sequence is given by (1) marl, (2) 
silt-marl stringer complex, (3) shale, (4) upper pay sand, (5) 
shale, and (6) lower pay sand. As pointed out by Gunning 
and Glinsky (2007), this is a difficult case study as the oil 
reservoirs are capped by a complex draping structure 
including thick, acoustically hard marls and thin, soft, silty 
layers. 
 
Again, we use two-offset stack seismic data (i.e., near and 
far), which have the incident angles of 0 and 30 degrees. 
Table 1 lists PP reflectivity coefficients of the near and far 
stacks and the PS reflectivity coefficients of the far stack for 

each layer interface, calculated using equations 2 and 3. We 
can see that the near PP reflectivity coefficients at the first 
two interfaces dominate the reflections from the three deeper 
interfaces. Both PP and PS far stacks provide much larger 
reflectivity at those deeper interfaces, with the PS reflectivity 
being slightly better than the PP reflectivity. 
 
Inversion results and analysis 
 
We use the same PP and PS wavelets as for the first example 
and the floating-grain model developed by DeMartini and 
Glinsky (2006) and reformulated by Gunning and Glinsky 
(2007) for Delivery. Our primary focus is on the estimate of 
floating-grain fraction, and we want to see what we can gain 
by including converted-wave data in the estimation. Based on 
the field data, we set the true floating-grain fraction to 3.5% 
and the net-to-gross ratio to 65+/-10%. Other parameters are 
set to be the most plausible values at this site (see Gunning 
and Glinsky, 2007 for details). For inversion, we give a prior 
of truncated Gaussian distribution with mean of 2% and 
standard deviation of 3% for the floating-grain fraction. This 
distribution gives significant prior probability to the zero-
float (i.e., the clean sand case). 
 
Figure 5 compares the estimated posterior probability 
distributions of floating-grain fraction and effective S-wave 
velocity in the upper and lower pay layers (i.e., layers 4 and 
6) under various situations with their corresponding prior 
probability distributions. The black curves are the prior 
probability distributions, and the red, green, and blue curves 
are the estimated probability densities obtained using only the 
near PP stack, the near and far PP stacks, and the near PP and 
far PS stacks, respectively. The comparison between the 
results using the near and far PP stacks is similar to those by 
Gunning and Glinsky (2007). We can see that the far PS 
stack significantly improves the estimate of effective S-wave 
velocity (see column 2) and provides more information than 
the far PP stack when estimating the floating-grain fraction 
(see column 1, blue curves vs. green curves). 
 
Conclusions 
 
The extended Bayesian model is effective when jointly 
inverting PP and PS data. PS data can provide 
complementary information to PP data and thus have the 
potential of significantly improving parameter estimation 
results. 
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Figure 1. Hierarchical structure of unknown parameters and available 
data, where the arrows show conditional relationships. 

 
Figure 5. Comparison between the prior and posterior estimates of 
floating-grain fraction ((a) and (c)) and S-wave velocity ((b) and 
(d)). The black curves and magenta vertical lines represent the prior 
and the true values. The red, green, and blue curves are the posterior 
probability densities obtained from the near PP stack, the near and 
far PP stacks, and the near PP and far PS stacks.  

 
Figure 4. Comparison of prior and posterior estimates for the three-
layer wedge model. The black shows the prior (dashes) and the true 
values (squares). The red, green, and blue show the medians (solid) 
and the 95% bounds (dashes) obtained from the near PP stacks, the 
near and far PP stacks, and the near PP and the far PS stacks. 

 

 
 

Figure 2. PP and PS wavelets, derived 
from borehole logs of a real field. They 
have the peak frequencies of 23 Hz and 13 
Hz, respectively. 
 

 
 
 
 
Table 1: PP and PS reflectivity coefficients for the 
six-layer floating-grain model 
 
Interfaces Near PP 

stack 
Far PP 
stack 

Far PS 
stack 

Marl/stringer  -0.1586 -0.0887 0.2363 
Stringer/shale 0.1007 0.0589 -0.1525 
Shale/upper 
pay sand 

0.0036 -0.0259 -0.0571 

Upper pay 
sand/shale 

0.0248 0.0394 0.0125 

Shale/lower 
pay sand 

-0.0100 -0.0352 -0.0386 

 

 
 
 
 

 
 
Figure 3. Seismic near PP stacks, far PP stacks, 
and far PS stacks for the three-layer wedge 
model. The PP data are in the PP time domain, 
while the PS data are in the PS time domain. 
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