

Turbidity current flow over an obstacle and phases of sediment wave generation

Michael E. Glinsky (CEO Science Leader) Moshe Strauss (Nuclear Research Center, Israel)

"Three Sisters" -- aboriginal womans' place for doing business, near BHPB Yandi iron ore mine

Roadmap

- description of the system & computations
- what is a physical phase and phase diagram (example of water)
- self sustainment of single flow, single grain
 - two phases of flow and phase diagram
- sediment wave formation with multiple flows
 - three phases of erosion/deposition
 - relationship to self sustainment
 - wavelength
- structure of deposited substrate (geologic facies)
- conclusion
 - it's the physics
 - self sustainment ==> phases of SW ==> geologic facies
 - one-to-one correspondence between geologic facies and phases of physical self organization of system

A real example of a sediment wave

Monterey Channel, offshore California USA

breached channel levee (splay)

depth of sea bottom

deep

Parts of the computer simulation

Simulation of the fluid + suspended grains

Interaction between the fluid and the bottom

Keeping track of what is deposited on or eroded from the bottom

Friday, 26 August 2011

Simulation of the fluid and suspended grains

 $\frac{\partial c_i}{\partial t} + \left(\vec{u} + u_{si}\hat{g}\right) \bullet \nabla c_i = \frac{1}{S_c R_e} \nabla^2 c_i$ mass continuity equations for each grain size settling velocity particle diffusion $\frac{\partial \vec{u}}{\partial t} + (\vec{u} \bullet \nabla)\vec{u} = -\nabla p + \frac{1}{R_e}\nabla^2 \vec{u} + c\hat{g}$ gravity force momentum continuity equation, ma=F pressure force viscous drag force $\nabla \bullet \vec{u} = 0$ incompressibility, EOS $R_* \equiv \frac{\rho_g - \rho_f}{\rho_f}$ x and y scaled by $L_0 = 250 \text{ m}$ c scaled by $C_0 = 0.8 \%$ *u* scaled by $u_b \equiv \sqrt{gR_*L_0c_0} = 5.4 \text{ m/s}$ $R_e \equiv u_bL_0 / v = (L_0 / d_e)^{3/2} = 10^9$ $d_e \equiv \sqrt{v^2 / R_* c_0 g} = 200 \,\mu\text{m}$ t scaled by $L_0 / u_b = 46$ s scaled by $d_0 \equiv \sqrt[3]{v^2 / R_* g}$ $R_{pi} \equiv (d_i / d_0)^{3/2}$ $u_{si} = f(R_{pi})$ = 41 µm = 42 scale of fluid dissipation d_i scale of particle dissipation \rightarrow = 41 µm

Simplified equations

eliminate pressure, set $S_c=1$ (particles transported as fluid) and write in terms of stream function and vorticity

$$\frac{\partial c_i}{\partial t} + (\vec{u} + u_{si}\hat{g}) \bullet \nabla c_i = \frac{1}{R_e} \nabla^2 c_i$$
$$\frac{\partial \omega}{\partial t} + (\vec{u} \bullet \nabla) \hat{\omega} = \frac{1}{R_e} \nabla^2 \omega + (\hat{g} \times \nabla c)_z$$

where

$$\omega = -\nabla^2 \psi = F(\psi) \qquad \omega \equiv \left(\nabla \times \vec{u}\right)_z$$
$$\vec{u} \equiv \left(\hat{x}\frac{\partial}{\partial y} - \hat{y}\frac{\partial}{\partial x}\right)\psi = G(\psi)$$

only $\{c_i\}$ and Ψ to solve for

$$\begin{array}{ccc} d_i & \theta_0 & HW = HL_0 \sim H\\ \text{parameters are:} & (\{\psi_{si}\}, \mathcal{J}, \mathcal{K}_e; \psi_0) & \longrightarrow (d, \theta_0, H) \end{array}$$

Resuspension brings initial concentration back into problem

Garcia and Parker resuspension model

explicit dependance on C_0

$$z_{i} \equiv \alpha_{1} \frac{u_{*}}{u_{si}} R_{pi}^{\alpha_{2}} = f(u_{*}, R_{pi})$$
$$u_{*} = \sqrt{\frac{1}{R_{e}}} \frac{\partial u_{x}}{\partial y} \qquad \text{limit to} \qquad u_{*} = \sqrt{\frac{1}{R_{e}}} \frac{\partial u_{x}}{\partial y}$$

$$u_* = \sqrt{\frac{\omega_b}{f_{\rm shr}R_e}}$$

turbulent closure

since R_e simulated is 10³ instead of real value of 10⁹

parameters are: (d, θ_0, H, c_0)

Interaction between the fluid and the bottom

Resuspension of

grains from the bottom is described using Garcia-Parker empirical relationships

Velocity of fluid near the bottom

For grains of different sizes

deposition = settling velocity × concentration

Boundary conditions on the fluid

Friday, 26 August 2011

Phases of water

Phase diagram of water

phase is determined by the value of the system parameters, system parameter space is divided into regions for each phase

What are the phases of turbidite deposition in a channel

Two phases of single flow

slope = 3 degrees, deposition outweighs erosion, decaying turbidity current ("depositing" phase)

collapsing building

slope = 4 degrees, erosion outweighs deposition, growing turbidity current ("self sustaining" phase)

avalanche

Friday, 26 August 2011

Closer look at evolution of single flow

Characteristics of phases of single flow

depositing

(a) monotonically decreasing mass to 0

- (b) suppressed and decaying front velocity
- (c) ill-defined head of current with un-elevated density

self sustaining

- (a) exponentially increasing mass
- (b) elevated front velocity, asymototing to constant
- (c) well-defined head of current with elevated density

The phase diagram of single flow

Three phases of multiple flow turbidite deposition

CSIRC

Closer look at evolution of turbidite deposition

Closer look at evolution of turbidite deposition (continued)

Characteristics of multiple flow turbidite deposition

no SW

slope never unstable to SW growth

(a) no development of SW(b) no periodic structures in

- b) no periodic structures in flow
- (c) monotonically decreasing mass
- (d) no significant erosion
- (e) suppressed front velocity
- (f) no evidence of individual flows in bedding
- (g) one massive bed fining downslope, coarsing from bottom to top
- (a) rapid local SW development to steady state profile
- (b) periodic flow structure
- (c) relatively constant mass with maximum
- (d) no appreciable erosion
- (e) reference front velocity
- (f) little evidence of individual flows in bedding
- (g) one massive bed fining downslope, oscillatory bottom to top structure
- (a) initially exponential growth of global SW
- (b) periodic flow & erosion structure
- (c) monotonically increasing mass
- (d) significant erosion, exponentially growing updip within flow
- (e) enhanced front velocity
- (f) evidence of individual flows in bedding
- (g) complex bed structure

SW buildup

slope sometimes unstable to SW growth

slope always unstable to SW growth

Phase diagram of multiple flow turbidite deposition

CSIRO

Resuspension is driving phase boundary as for single flow

Study of dependance of SW wavelength on particle concentration

Friday, 26 August 2011

Dependance of particle concentration on wavelength

wavelength is insensitive to other parameters

Friday, 26 August 2011

Geologic facies are physical phases

single flow

multiple flow substrate surface

deposited substrate physics geologic facies ! self sustainment

sediment wave phases

The future: phases could be identified by new texture "attributes"

path integral formulation of data assimilation

- monte carlo
- eliminate implicit time step
- fundamental coordinates of dynamics (related to fundamental excitations of physical system)
 - best coordinates to identify phase of self organisation, based on iterative wavelet transformation
 - data assimilation or synchronisation of "fundamental variables" leading to prediction of effective parameters of texture

unique fingerprint of texture

excitation of order 3

