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We study the flow of particle-laden turbidity currents down a slope and over an obstacle. A high-resolution
2D computer simulation model is used, based on the Navier-Stokes equations. It includes poly-disperse
particle grain sizes in the current and substrate. Particular attention is paid to the erosion and deposition
of the substrate particles, including application of an active layer model. Multiple flows are modeled from a
lock release that can show the development of sediment waves (SW). These are stream-wise waves that are
triggered by the increasing slope on the downstream side of the obstacle. The initial obstacle is completely
erased by the resuspension after a few flows leading to self consistent and self generated SW that are weakly
dependant on the initial obstacle. The growth of these waves is directly related to the turbidity current
being self sustaining, that is, the net erosion is more than the net deposition. Four system parameters are
found to influence the SW growth: (1) slope, (2) current lock height, (3) grain lock concentration, and (4)
particle diameters. Three phases are discovered for the system: (1) “no SW”, (2) “SW buildup”, and (3)
“SW growth”. The second phase consists of a soliton-like SW structure with a preserved shape. The phase
diagram of the system is defined by isolating regions divided by critical slope angles as functions of current
lock height, grain lock concentration, and particle diameters.

I. INTRODUCTION

Turbidity currents can trigger a variety of topograph-
ical behaviors by erosion and deposition over the sea
floor, such as sediment waves (SW). These currents are
particle laden and gravity driven, where the particles
are suspended by fluid turbulence1. When the bot-
tom slope is large enough, the current can propagate
in a self-sustained mode with increasing mass and high
velocity2–5.

Migrating SW generated by erosive turbidity currents
have been reported in a variety of marine settings which
include splays from submarine levees and submarine
fans6,7. The time scale of SW formation can be thou-
sands of years and include a sequence of many turbidity
currents. Typical SW wavelengths are in the range of 100
m to 5 km, and heights are in the range of 5 m to 100 m.
A series of turbidity currents flowing across a rough sea
can form a field of SW that migrates upstream8,9. A rela-
tion, λ = 2πh was found between the SW wavelength, λ,
and the turbidity current height, h, that is in agreement
with observation for typical h = 60 m and λ = 380 m7,10.

The traditional explanation of the mechanism for gen-
erating a train of up-streaming SW is based on sequence
of turbidity currents flowing over an erodible bed. A su-
percritical flow, where the kinetic energy of the flow is
larger than the potential energy (Froude number larger
than one), is considered a favorable condition for the for-
mation. An obstacle on the slope induces an erosion on
the downstream side of the obstacle leading to a subse-
quent decrease in slope and to the formation of the next
obstacle. This establishes to a train of downstream crests
in the waveform. The upstream migration of the wave-
form results from the preferential deposition of sediment
on the upslope and the preferential erosion on the downs-

lope. The generation of downstream undulations and the
upstream migration by deposition and erosion can gener-
ate an extensive SW field. This mechanism of generating
SW is similar to the generation of transportational cyclic
steps11–13. Each cyclic step is bounded by a hydraulic
jump and the resulting deposition and erosion causes the
waves to migrate upstream.

Numerical simulations have been carried out in order
to explain the formation of SW by turbidity currents.
The models can be divided into two categories: depth-
averaged models, and depth-dependant models. The
Navier-Stokes depth-averaged models perform 1D sim-
ulations of turbidity currents flowing downslope over an
erodible bed. Pre-existing topography, such as surface
roughness or a break in slope, are required to trigger
the formation and growth of SW8,14,15. These models
do not include the eddy structure in the turbulent flow
imprinted by the SW periodicity. They also are unable
to capture the detailed interaction between the sediment
bed and the current close to the bed.

A linear stability analysis to generate SW based on the
2D depth dependent Navier-Stokes equations was done
by Hall et al. 16 and Hall 17 . Their results are consistent
with a growth of the SW and their upstream migration.
There are approximations made in this analysis. The
front of the current is assumed to have passed so that the
SW is growing underneath the body of the current. An
unrealistic erosion model without a threshold behavior is
used. Finally the expression used for the flow is not self
consistent with the substrate structure.

We are motivated to eliminate the approximations
used in these studies, and to obtain a more complete
understanding of what controls the character of the SW
generation. We therefore study SW using a geometry
and computer simulation method that takes into ac-
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count the non-linearity, use a realistic erosion model,
and model the depth dependant behaviour in a self con-
sistent and self generating way. In our treatment we
apply non-linear simulations based on the 2D depth-
dependent Navier-Stokes equations3,18,19 with a realistic
erosion relation15,20,21. The model includes the effects
of poly-disperse particles in the current and in the sub-
strate, and a sequence of flows with a self consistent cou-
pling to the substrate. An obstacle on the slope is used
to trigger the possible buildup and possible growth of the
SW. The flows are initiated from a lock release.

We study the character of the SW generation as a func-
tion of four controlling parameters: (1) slope, (2) current
lock height, (3) grain lock concentration, and (4) parti-
cle diameters. Three distinct phases of the SW genera-
tion are observed. Regions of the controlling parameter
space are identified for each of the phases – the phase
diagram. The boundaries between these regions are di-
rectly related to the self-sustainment of the flow. The
first will be shown to be related to the flow being deposi-
tional everywhere on the slope, the second related to the
flow being self sustaining only over the downslope part
of the obstacle, and the third related to the flow being
self sustaining everywhere. The first condition results in
no SW formation, the second in the formation of a soli-
ton like structure and the third with growing SW. The
soliton like structure22, is a relatively constant periodic
profile that migrates updip. This stable profile exists at
the threshold between deposition and self-sustainment.
The similarity to the buildup mode in a laser23, led us to
calling it the SW buildup phase.

The relationship of these solutions to the depth-
averaged models is studied by forming depth-averaged
variables from the detailed depth profiles. A periodic
structure in the flow is noted. It is synchronised to the
sediment waves in the substrate. No such structure is
seen in the depth-averaged models. They have a very
smooth character. This is not surprising since they do
not incorporate the eddy structure.

In the following sections we will present the physical
model and numerical approach (Sec. II), followed by the
simulations results (Sec. III) and concluding remarks
(Sec. IV).

II. MODEL DESCRIPTION

A. Governing equations

We consider a particle-laden turbidity current model
for which the particle concentration is relatively low
(∼ 1%) and the interaction between the particles can
be ignored. Hence, the density variation appears only
in the gravity term (the Boussinesq approximation). We
assume that the particles are transported by the current
and settle relative to the fluid in the direction of the grav-
ity vector. The system is assumed to be two-dimensional
with normalized variables: x = x̃/L0, y = ỹ/L0, and

t = t̃/t0, where x̃ and ỹ are the un-normalized space
variables and t̃ is the un-normalized time variable. Here,
a characteristic length scale, L0, is used and the time
is normalized as t0 = L0/ub. The buoyancy velocity is
defined as

ub =
√
R∗c0gL0, (1)

where g is the gravity constant, c0 is the initial grain con-
centration in the lock, R∗ = (ρp−ρf )/ρf is the fractional
density difference, ρp is the grain particle density, and ρf
is the fluid density. The concentration of grain type i, c̃i,
is normalized to give ci = c̃i/c0. The variable x is in the
local flow direction, y is in the perpendicular direction
and θ is the local angle between the direction of gravity
and the negative y direction. In order to model complex
topgraphies we use a spatially varying gravity vector with
and angle θ3,24. A curvilinear coordinate system is sim-
ulated with the second order curvatures being neglected.
This approximation is valid for flow heights smaller than
the radius of curvature of the bottom topography.

The current equation, in normalized units, are written
in terms of the vorticity, ω, and the stream function, ψ,

ux =
∂ψ

∂y
, (2)

uy = −∂ψ
∂x

, (3)

ω =
∂uy
∂x
− ∂ux

∂y
, (4)

where ux = ũx/ub and uy = ũy/ub are the normalized
velocities. These equations are consistent with the con-
tinuity equation

∂ux
∂x

+
∂uy
∂y

= 0. (5)

The resulting current equations for ω, ψ, and ci are3,18,19

∂ω

∂t
+ (~u · ∇)ω =

1

Re
∇2ω + (ĝ ×∇c)z, (6)

∇2ψ = −ω, (7)

∂ci
∂t

+ (~u+ usiĝ) · ∇ci =
1

Pe
∇2ci, (8)

where c =
∑
i ci is the normalized concentration of grains

in the current (initially c = 1), and ĝ ≡ (sin θ,− cos θ)
is a unit vector in the direction of gravity. Equation (6)
is obtained from the Navier-Stokes momentum equation
and includes the turbulent motion of the flow. Equation
(7) is obtained from Eqs. (2)–(4). In these equations we
have used the system’s Reynolds number, Re = ubL0/ν,



3

where ν is the fluid viscosity. The Peclet number Pe =
ScRe is related to the Schmidt number, Sc = ν/κ, where
κ is the particle diffusion constant. We assume that small
scale unresolved flow structure will affect the transport
of particles in the same way as the transport of the fluid,
so we set Pe = Re or Sc = 118. The settling velocity, ũsi,
for grain type i is normalized to be usi = ũsi/ub. Note
that the driving force of the current, in Eq. (6), comes
from the variation in the concentration c perpendicular
to ĝ.

The exchange of particles between the substrate and
the current is governed by an Exner type equation for the
substrate elevation η(x, t) in accordance with the sedi-
ment transport rate25,26,

(1− λp)
∂η

∂t
=
∑
i

(Jsi − Jri), (9)

where Jsi and Jri are the volume rate of deposition and
resuspension from the substrate surface for grain type
i, respectively. The sum in Eq. (9) is over all types of
grains, i, and λp is the average substrate porosity. The
substrate is divided into an upper and lower layer, where
the upper layer is an active layer (AL) with thickness
La. Exchange of particles between the substrate and the
current happens via this layer.

We use, for the current, a rectangular computational
domain. At the boundary, we enforce a non-slip, no nor-
mal flow condition, ψ = ∂ψ/∂y = 0, at the top and bot-
tom boundaries. We also impose a no normal flow condi-
tion at the left and right walls so that ψ = ∂2ψ/∂x2 = 0.
This allows the use of fast Fourier transforms in the x
direction for high accuracy18,24.

B. Physical mechanisms

1. Resuspension term

The exchange of particles between the current and
the substrate includes settling and resuspension contribu-
tions. For grain type i the normalized exchange current,
Ji, is

Ji = Jsi − Jri = usi(−ĝycb − εsi), (10)

where Jsi is the settling current of grain type i with a
settling velocity, usi, such that

Jsi = −usiĝycb, (11)

with cb being normalized grain volume concentration
close to the bottom of the current and ĝy = − cos θ. The
resuspension current of grains of type i is

Jri = usiεsi, (12)

where εsi is the normalized resuspension volume. Apply-
ing laboratory experiments, Garcia and Parker 20 derived

the resuspension relation,

εsi =
a

c0

z5i
1 + a

0.3z
5
i

fri, (13)

where fri is a resuspension factor equal to the relative
presence of grain type i in the active layer at the substrate
surface. The factor a in Eq. (13) for field scale can be
increased by a factor of 621, but can also be reduced by a
similar factor due to sediment strength – the entrainment
limiter14,15. For simplicity, we use the older value a =
1.3× 10−720 in our calculation. The expression for zi is

zi = α1
u∗
usi

Rα2
pi , (14)

where Rpi is the particle Reynolds number,

Rpi =
√
R∗gdi

di
ν
, (15)

di is the diameter of grain type i, and u∗ = ũ∗/ub is the
normalized shear velocity at the boundary which can be
written in normalized variables as3

u∗ =

√
1

Re

∂ux
∂y

. (16)

We use values for α1 and α2 from experiments by Garcia
and Parker 20 ,

(α1, α2) =

{
(1, 0.6) Rp > 2.36
(0.586, 1.23) Rp ≤ 2.36

. (17)

In Eq. (14), for the geophysical field currents, a slope
dependence term θ0.08 of order unity is ignored15. Equa-
tion (13) has a high power in zi and therefore behaves as
a threshold relation for the resuspension as a function of
(u∗/usi)

5
.

2. Active layer

We apply an active layer (AL) in the substrate surface
from which resuspension can take place. Its dimension
depends on the resuspension strength25. The AL can
have a very large range in depth, from the size of a few
grains, in the case of turbidity currents, to the size of the
width of the flow, in the case of fluvial flows. We assume
that the flow can mix the particles in the AL, generating
a uniform distribution of all grain types in this layer.

The mixing mechanism in the AL can be due to grain
traction or small scale topographic variations of the sub-
strate surface. For example, small scale dunes can accu-
mulate coarse grains in the local minima and fine grains
in local maxima. The AL width would be the long range
average distance of these local maxima and minima25.
All the grains in the AL are available for resuspension
by interaction with the current turbulence. Resuspen-
sion causes a decrease in the upper boundary height of
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the substrate and for a given AL width, deeper parts of
the substrate can now be included in the AL. Deposi-
tion increases the substrate height so that deeper parts
of the substrate must now be excluded from the AL. We
include in the computation an AL model capable of han-
dling very small, La � 1, and very large, La � 1, active
layers.

In our simulations, we divide the substrate into zones
of size ∆s perpendicular to the substrate surface, where
the upper zone may be partially filled. Typically zones
are ∆s ≈ 0.1 in normalized units. The AL can be very
large and include many zones, or can be very small and
encompass just a fraction of a single zone. The upper
boundary of the substrate is the upper boundary of the
AL. The lower boundary of the AL is obtained by sub-
tracting the AL width, La, from the upper boundary.
The lower boundary can be in the same zone as the up-
per boundary or in a much lower zone. Every time step,
we sum over the resuspension and deposition mass, ob-
tain the new upper level of the substrate, and define the
AL range. A mixing process is then applied to the AL to
make the grain type distribution uniform from the bot-
tom to the top of the AL.

Armoring happens when fine grains can be resus-
pended, while coarse are being deposited by the flow.
This will leave an AL made up of only coarse grains which
will not be able to be resuspended. This turns off the re-
suspension, changing the flow into a purely depositional
one. The result is a dissipating current and reduction in
the front velocity.

3. Settling velocity

The settling velocity, ũsi, for grain type i is obtained
by using the relationship from Dietrich 27 ,

ũsi = 3
√
R∗gνWi, (18)

where

log10Wi = −3.76715 + 1.92944 A− 0.09815 A2

− 0.00575 A3 + 0.00056 A4, (19)

A = 2 log10Rpi, and the particle Reynolds number, Rpi is
defined by Eq. (15). The normalized settling velocities,
usi = ũsi/ub, depends on the input parameters of the
particles. Here, Rpi can be identified as the normalized
version of the particle diameter, di.

4. Shear factor

To avoid unrealistic resuspension, a shear factor is in-
troduced. It is similar to the parameter in other models
called the bed resistance coefficient or the bottom drag
coefficient, CD

2. The shear factor, fshr, is used to obtain
the appropriate shear velocity, u∗, to avoid unrealistic

resuspension in the simulations. We include in Eq. (16)
a shear factor, fshr, such that

u2∗ =
ωb

fshrRe
, (20)

where ωb is the vorticity close to the bottom, Re is the
Reynolds number, and Eq. (4) has been used. The shear
friction force at the bottom of the flow is proportional
to u2∗. Other models such the κ–ε turbulence model28–30

and the depth-averaged model2 do not have a shear fac-
tor. Instead, they have CD. We will show that there is
a simple relationship between our shear factor, fshr, and
CD, so that they are similar parameters.

The equivalent parameter in the other models is de-
fined as

CD ≡
(
u∗
vb

)2

, (21)

where vb is the flow velocity at the grid closest to the
bottom current. The relation between vb and ωb is

ωb =

(
∂ux
∂y

)
b

=
vb
∆y

, (22)

where ∆y is the zone height, and ux = 0 at the bottom.
In the κ–ε turbulence model Felix 28 and Choi and Gar-

cia 29 use Eq. (21) to obtain the u∗ used in the resuspen-
sion relation and approximate CD by

CD =

(
1

κ
ln (Ezb/z0)

)−2

, (23)

where κ = 0.4 is the von Karman constant, E is the
roughness parameter (which varies between 9 to 30 going
from smooth to rough walls), zb is the height of the lowest
grid cell, z0 is the roughness height (for a smooth bottom
z0 = ν/u∗), and ν is the fluid viscosity. For our case with
a scale length of 250 m, 64 zones per unit (that is zb = 3.9
m), E = 10, and z0 = 10−3 m, we get CD = 1.4× 10−3.
Felix 28 using Eq. (23) obtains CD = 2.5× 10−3. Garcia
and Parker 20 predict that for geophysical currents with
Reynolds numbers Re ≈ 103 to 105, CD ≈ 0.1 to 10−3.

Parker et al. 2 depth averaged model used three trans-
verse average equations (for height, h, velocity, U , and
concentration, C) and used Eq. (21) as a closure condi-
tion with CD = 4× 10−3. They also extended the model
to four equations, adding an equation for the turbulence
energy, κ. Assuming that CD = ακ with α = 0.1, they
found that CD varied in the range of approximately 0.1
to 10−3.

For our case, we evaluate CD using Eqs. (20)–(22) and
obtain

CD =
1

fshrRe∆yvb
. (24)

Substituting our simulation parameters (Re = 103,
fshr = 38, ∆y = 1/64, and vb = 0.1) into this equation
we get CD = 1.7× 10−2.
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For our simulations, we evaluated Eq. (21) over a wide
range of locations, x, and times, t. We found that CD
varies between about 0.1 to 10−3. We therefore conclude
that fshr used in our model produces resuspension though
a u∗ similar to the resuspension obtained in the previous
models using CD.

C. Numerical approach

The numerical methods used to solve the current
Eqs. (6)–(8) are based on Blanchette et al. 3 , Hartel
et al. 18 , Lele 31 . We perform a Fourier transform on ψ
in the x direction and use a sixth-order finite difference
scheme for the derivatives in the y-direction, except near
the boundaries where the the derivatives are accurate
to third order. A third-order Runge-Kutta integrator is
used to propagate the solution in time. A finite differ-
ence time integrator is applied to Eq. (9) to update the
substrate particle budget, and an AL scheme is applied
in the determination of the balance between erosion and
deposition. An adaptive time step is used which satisfies
the Courant-Friedrichs-Levy condition while minimizing
computation time. A typical time step is ∆t ≈ 0.01. For
a typical length scale L0 = 250 m and buoyancy velocity
ub = 5 m/s, we get a time scale of t0 = L0/ub = 50 s.

Typically, the fluid equations are solved over a rect-
angular domain (−4 ≤ x ≤ 23 and 0 ≤ y ≤ 3) divided
into 513 and 193 grid cells, respectively. An additional
rectangular grid is used for the substrate at the same
x locations and over a range, in the perpendicular di-
rection, of 0 < s < 20, where the distance is scaled by
s0 = L0c0/(1 − λp) with a porosity of λp = 0.3. The
substrate is divided into 513 and 601 grid cells in the x
and s directions, respectively. An AL is applied of height
La = 0.02. Changing La by a factor of 2 has a small
effect on the results.

A lock release is simulated where the fluid is initially
located at rest in a typical range of −4 ≤ x ≤ 0 and
0 ≤ y ≤ 1.5, with a fluid height of y = 3. It was shown
by Blanchette et al. 3 that the effect of the upper fluid
boundary can be neglected if it is at least twice the height
of the lock release, that is it can be considered a deepwa-
ter case. For numerical stability the initial lock particle
concentration profile and the substrate bottom topogra-
phy is smoothed over a few grid points (typically 6). The
typical initial volume concentration is c0 = 0.8%.

The value of Reynolds numbers, Re = ubL0/ν, for ge-
ological turbidity currents with ub in the range of 1 m/s
to 5 m/s, scale lengths, L0, in the range of 1 m to 250 m,
and a water viscosity of ν = 10−6 m2/s, are in the range
106 to 1010. These Reynolds numbers are well beyond the
reach of numerical simulation. As Re increases, smaller
scales must be resolved, which also implies smaller time
steps as well as more grid cells. However, as shown by
Blanchette et al. 3 there is little change to the eddy struc-
ture as Re increases from 103 to 104. Therefore we have
used Re = 103 in this work. Although we capture only

the large scale behavior of the current, neglecting the
smaller scales should not change the result at these larger
scales.

To avoid unphysical resuspension, we use a shear fac-
tor of fshr = 38. The eroded particles are spread uni-
formly in a region close to the substrate, typically over a
thickness of 0.15. Changing the spreading range by 20%
only has a small effect on the results. When the resus-
pension is high, the particles injected over this range are
rapidly transported further by the flow to distances much
greater than the initial injection range. This leads to the
small sensitivity to the initial injection range. In con-
trast, depth-averaged models the injected particles are
spread over the transverse layer.

Five types of grains are simulated with diameters that
range from 300 µm to 1000 µm. The number of flows
simulated are typically 120. A typical runtime on an 8
core (dual quad core Xeon E5462, 2.68 GHz) machine is
20 hours. The program is restartable.

D. Transverse average current variables

To study the current structure and compare it to pre-
vious work, we depth average the transverse current pro-
files in the y-direction as a function of x. In the ap-
pendix of the paper by Parker et al. 2 , they write the
depth-averaged variables for the velocity, U , height, h,
and concentration, C, in terms of the local velocity, ux
as

U h =

∫ yl

0

ux dy = a1, (25)

U2 h =

∫ yl

0

u2x dy = a2, (26)

and

U C h =

∫ yl

0

ux c dy = a3, (27)

where y is the transverse coordinate, ux is the velocity in
the longitudinal x-direction, and c is the normalized con-
centration. Here, yl defines the range in the y-direction
of appreciable concentration in the current, c > cl

32. We
use a value of cl = 3/4, relative to the initial concentra-
tion of 1. The transverse layer average values for U , h,
C obtained from Eqs. (25)–(27) are

U =
a2
a1
, (28)

h =
a21
a2
, (29)

and

C =
a3
a1
. (30)
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Averaging the simulation profiles of ux with Eqs. (25)–
(27), the transverse average variables U , h, and C are
obtained by using Eqs. (28)–(30).

The depth-average variables are used to calculate the
local Richardson number,

Ri =
1

F 2
r

=
R∗gCh

U2
, (31)

where Fr is the local Froude number. We define F2 as

F2 ≡
1

Ri
− 1. (32)

The square of the Froude number is proportional to U2/h
and indicates the ratio of the kinetic energy of the flow
to the potential energy of the fluid. For Ri < 1, Fr > 1,
or F2 > 0 the local current is supercritical, that is the
kinetic energy of the flow is greater than the potential en-
ergy of the fluid. It is usually assumed2 that a supercriti-
cal flow is predominately erosional and that a subcritical
flow, F2 < 0, is predominately depositional.

Eventhough the depth-averaged variables only show
the characteristics of the envelope of the current, we will
find that the eddy structure has an imprint on the av-
erage velocity, U , and average height, h. There are pe-
riodic structures on these variables correlated with both
the sediment waves and eddy structure. A convergence of
the flow toward the substrate reduces h and increases U
causing a peak in F2. This peak correlates with a peak
in the shear velocity, u∗, and with a resulting increase
in resuspension. In the next section we will present the
depth average variables U(x), C(x), and h(x), obtained
from the detailed current profile, as functions of the lo-
cation x. We will also present the local Froude number
dependance as F2(x) (remember that F2 > 0 indicates
supercritical flow locally and F2 < 0 indicates locally
subcritical flow), and the local u5∗(x) (indicating the lo-
cal shear velocity dependance of the resuspension, see
Eqs. (13) and (14)).

III. SIMULATION RESULTS FOR SEDIMENT WAVE
GENERATION

A. Effect of an obstacle

We simulated multiple lock release flows down a 2D
“channel” in the x-y plane of dimension −4 < x < 23
and slope θ0 = 1.5◦, where the scale length for x and
y is L0 = 250 m. The flow and the substrate initially
include 5 types of grains equally distributed with diam-
eters of {di} = {300, 400, 500, 600, 700}µm. This corre-
sponds to particle Reynolds numbers, Rpi, that range
from 20 to 71. The suspension in the lock is located in
the area where −4 < x < 0, 0 < y < H, and H = 1.5.
The water boundary is at y = 3, which is large enough
to cause little coupling of the flow to the water bound-
ary – a deepwater flow. The initial particle concentra-
tion in the lock is c0 = 0.8%. An obstacle of triangular

shape with rounded corners is located along the chan-
nel at {xi} = {4, 6, 8} = {start, top, end} with an angle
of −2◦ on the upstream side and 5◦ on the downstream
side. The current is absorbed at the end of the channel,
in the range of x = 20 to 23. The initial substrate and
obstacle structure is presented (in real units) in Fig. 1a.

Figure 1 presents the substrate structure and the de-
velopment of the sediment wave along the channel in the
x-y plane for up to 120 sequential flows. Each flow has
been completed before the next is started. The substrate
is colored according to the average grain diameter over
the range of 450 µm to 600 µm. Considering the parti-
cle diameter distribution in the substrate, by examining
its width or variance, we find similar behavior. For the
fifth flow, f = 5, there is deposition before the obstacle
crest and erosion after the crest. The extra erosion down-
stream generates the next break (increase) in slope and
starts the next crest in the downstream direction. For
f = 10 and f = 20 a train of breaks (increase) in slope
develop seeding the SW structure. Every SW crest moves
upstream due the current deposition on the upstream side
of the crest and the erosion on the downstream side. By
f = 40 a well developed SW train is formed, propagat-
ing downstream by the seeding of new breaks in slope,
and migrating upstream by the structured erosion and
deposition. By f = 80 and f = 120 the upstream SW
are effected by erosion close to the lock boundary. The
downstream part of the SW starts to be affected by the
change in slope due to current reflection and deposition
at the right boundary. Increasing the channel length ex-
tends the range of the SW downstream, but does not
effect the general structure of the flows that we will ana-
lyze. In the figures presenting the development of SW in
the substrate, as in Fig. (1), we consider the color map
of the average grain size diameter.

Figure 2 presents contours of the current’s particle con-
centration in the x-y plane at the normalized time, t = 8,
for flow, f = 20. The current head has already passed
over the obstacle. The time scale is t0 = L0/ub = 46
s, the length scale is L0 = 250 m, the buoyancy veloc-
ity is ub =

√
gR∗c0L0 = 5.42 m/s, g = 9.81 m/s2, and

the particle density change is R∗ = 1.5. The image col-
ors are the particle volume concentration in the range of
0 to 1.5%. Also shown in Figure 2 are the transverse
average variables as a function of x: the current veloc-
ity U(x) in blue, the concentration C(x) in white, the
current height h(x) in green, the change in the Froude
number F2(x) = F 2

r − 1 = 1/Ri − 1 in red, and the
shear velocity term in the resuspension expression V 5

shr
in yellow. Note that SW periodicity in the substrate is
coupled into the current and appears as eddies in the
current and as a periodicity in the transversely averaged
variables. Characteristic values for the flow are U ≈ 4.5
m/s, C ≈ 1.5% (twice its initial value), and h ≈ 60 m.
The Froude number is greater than 1 for a large part
of the flow (supercritical) and the flow is highly erosive.
Note that the amount erosion is not well correlated with
the degree of supercriticality. There is also an exponen-
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FIG. 1. Development of sediment waves on the substrate.
The x-y image is colored according to the average grain di-
ameter. The color bar is a rainbow, starting from 450 µm at
blue and ending at 600 µm at red. The profiles are shown
after: (a) 1, (b) 5, (c) 10, (d) 20, (e) 40, (f) 80, and (g) 120
flows. The initial slope is θ0 = 1.5◦, and the flows include 5
types of grains with diameters that range from 300 µm to 700
µm (Rpi = 20 to 71). Initially there is an obstacle between
x values of 1000 m and 2000 m with a peak at 1500 m (in
normalized units: 4, 8, and 6). The upstream slope of the
obstacle is −2◦, and the downstream slope is 5◦. The lock is
between -1000 m and 0 m (−4 < x < 0) with an initial height
of 375 m (H = 1.5) and particle concentration of c0 = 0.8%.

tial growth in the erosion as one goes from the head to
the tail of the flow, while the change is the Froude num-
ber is relatively constant. The wavelength of the SW is
consistent with the Normark et al. 10 relation, λ = 2πh,
where λ = 380 m for h = 60 m.

Figure 3 shows the total mass in the flow, m(t), and

FIG. 2. Particle volume concentration of the flow in the
x-y plane at the normalized time, t = 8, for flow, f = 20
(time scale is t0 = L0/ub = 46 s, buoyancy velocity is
ub =

√
gR∗c0L0 = 5.42 m/s, particle density change rela-

tive to water is R = 1.5, and initial particle concentration is
c0 = 0.8%). This corresponds to Fig. 1c. The color bar is a
rainbow, starting from 0 at blue and ending at 1.5% at red.
Also shown are the depth averaged current variables: (blue)
velocity U × 100 in m/s, (white) concentration C × 2 × 104,
(green) current height h in m, (red) change in Froude number
F2 × 200, and (yellow) shear velocity term in the resuspen-
sion V 5

shr × 5 × 106 in (m/s)5. All quantities plotted have SI
dimensions.

its front position, xtip(t), as a function of time for flows
{f} = {1, 20, 40, 80, 120}. For flows 1 and 20, there is an
increase in the total mass, because of resuspension, by
almost a factor of 2. The current asymptotes to a speed
of about 4.5 m/s. The resuspension maintains the cur-
rent motion and redistributes the substrate mass to form
the growing SW. For later flows (40, 80, and 120), the
substrate slope is reduced by deposition at the end of the
channel. Consequently, the resuspension and the growth
of the SW are reduced, keeping the mass in the flow con-
stant and changing only the sediment wave structure.

Figure 4 shows the result of reducing the obstacle
height and width by a factor of 2, located at {xi} =
{4, 5, 6} with angles {θi} = {−2◦, 5◦}. All other param-
eters are the same as the previous simulation. Reducing
the obstacle size has only a small effect on the growing
SW. Comparing Fig. 4 to Fig. 1 for flow 80, we find a
very similar SW development. The obstacle’s function is
to trigger the probable growing wavelength. By flow 10,
the obstacle is eroded leaving the system to develop SW
independent of the initial condition.

B. Influence of lock height

We now present a series of systematic parameter stud-
ies over the next three subsections of the paper. We start
with examining the influence of lock height, H, on the
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FIG. 3. (a) normalized suspended mass in flow as a function
of time, m(t)/m0, for flows: (black) 1, (red) 20, (blue) 40,
(cyan) 80, and (magenta) 120. Time is plotted in normalized
units (the scale for time is t0 = 46 s). (b) front position as a
function of time, xtip(t), for flows: (black) 1 and (magenta)
120. The front velocity is reduced from 0.90 for flow 1, to 0.73
for flow 120. In dimensional units, these are velocities of 4.9
m/s and 3.9 m/s (ub = 5.42 m/s).

character of the flow and SW formation. The lock height
is directly related to the size of the flow. Three charac-
teristic lock heights (0.5, 1.0, and 1.5) are simulated for
the reduced obstacle system displayed in Fig. 4. The
results are shown in Figs. 5 to 7. The slope angle was
also changed for each of the cases to 0.5◦, 0.5◦ and 1.5◦,
respectively. This was done to access the three different
phases of SW development.

For the first case (Fig. 5a), there was no sediment
wave formation. We call this the “no SW” phase. It is
characterized by a final uniform slope topography. As
more flows are deposited the obstacle is removed from
the topography. Further characteristics of this phase can

FIG. 4. Development of sediment waves on the substrate
with a reduced size obstacle (by a factor of 2). Initially there
is an obstacle between x values of 1000 m and 1500 m with
a peak at 1250 m (in normalized units: 4, 6, and 5). The
upstream slope of the obstacle is −2◦, and the downstream
slope is 5◦. The x-y image is colored according to the average
grain diameter. The color bar is a rainbow, starting from 450
µm at blue and ending at 600 µm at red. The profiles are
shown after: (a) 1, (b) 10, (c) 40, and (d) 80 flows. Other
than the size of the obstacle, all parameter are identical to
the simulations shown in Figs. 1 to 3.

be seen in Figs. 6a and 7. Figure 6 shows the profile
of the particle concentration in flow and the depth av-
eraged current variables in the same manner as Fig. 2.
The time evolution of the suspended mass in the flow,
m(t), and the front position, xtip(t), are shown in Fig.
7 in the same manner as Fig. 3. Note the simple struc-
ture to the flow in Fig. 6a. The flow is divided into the
head with and elevated velocity and concentration. It
is modestly supercritical as evidenced by F2. The head
is followed by a subcritical body. There is no appre-
ciable erosion as evidenced by the small values of V 5

shr.
There is little structure within these two parts of the
flow. Figure 7 shows a monotonically decreasing mass
and a reduced front velocity of 0.42 in normalized units
and 2.3 m/s in dimensional units. An important thing
to note about this phase is that the initial substrate is
at no point steep enough in slope to support self sustain-
ment according to the criteria presented in Blanchette
et al. 3 . This criteria gives the critical angle, θc, for self
sustainment as a function of c0, H, and d. The character-
istics of the deposited beds shown in Fig. 5a, are quite
simple. Eventhough there have been many flows there
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FIG. 5. Development of SW on a substrate after 80 flows,
to study the effect of the initial height, H. The x-y image is
colored according to the average grain diameter. The initial
obstacle has the reduced height shown in Fig. 4. The color
bar is a rainbow, starting from 450 µm at blue and ending
at 600 µm at red. The profiles are shown for: (a) “no SW”,
H = 0.5, θ0 = 0.5◦; (b) “SW buildup”, H = 1.0, θ0 = 0.5◦;
and (c) “SW growth”, H = 1.5, θ0 = 1.5◦.

appears to be one massive bed that becomes gradually
more fine grained downslope and gradually more coarse
grained going from the bottom to the top of this massive
bed.

The second phase is demonstrated in Figs. 5b, 6b,
and 7. We call this phase “SW buildup”. This phase
is characterized by the obstacle being reorganized by the
early flows into a stable self-consistent profile that neither
grows or decays with additional flows. It should be noted
that the initial substrate profile is only steep enough on
the downstream side of the obstacle to support self sus-
tainment. We recognize that this profile is maintained
on the boundary of SW growth where the resuspension
leading to growth is balanced by the deposition favoring
decay. Because of this and the invariant profile that we
call this phase soliton like. In addition, it is very similar
to the buildup mode in a laser. In a buildup mode, ran-
dom perturbations in the laser cavity are self organized
into a persistent organized mode in the laser cavity. This
is the reason for the name of this phase. Further charac-
teristics of this phase are shown in Fig. 6b. The flow is
now modestly supercritical over most of its evolution as
evidenced by the F2 profile. It also shows structure in the
velocity, concentration, and especially F2 that is synchro-
nised to the SW structure. There is still no appreciable
erosion as evidenced by V 5

shr. Figure 7 shows that m(t)
has a maximum and remains near the initial mass. The
front velocity of 0.66, 3.6 m/s in dimensional units, is not
elevated or reduced. The characteristics of the deposited
beds shown in Fig. 5b, display a bit more structure than

FIG. 6. Particle volume concentration of the flow in the x-
y plane at the normalized time, t = 8, for flow, f = 15, to
study the effect of the initial height, H. This corresponds to
simulations of Fig. 5. The color bar is a rainbow, starting
from 0 at blue and ending at 1.5% at red. Also shown are
the depth averaged current variables: (blue) velocity U × 100
in m/s, (white) concentration C × 2 × 104, (green) current
height h in m, (red) change in Froude number F2 × 200, and
(yellow) shear velocity term in the resuspension V 5

shr×5×106

in (m/s)5. All quantities plotted have SI dimensions. The
profiles are shown for: (a) “no SW”, H = 0.5, θ = 0.5◦; (b)
“SW buildup”, H = 1.0, θ = 0.5◦; and (c) “SW growth”,
H = 1.5, θ = 1.5◦.

the previous phase. There still do not appear to be dis-
tinct beds associated with each flow. Instead there is a
massive bed with gradually changing characteristics. It
becomes more fine grained downslope. Vertically it shows
more character that the previous phase. It gradually os-
cillates from bottom to top. The resulting profile has
stripes of coarse grained deposits dipping down in the
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FIG. 7. To study the effect of the initial height, H. (a)
normalized suspended mass in flow as a function of time,
m(t)/m0, for the same simulations as Fig. 5 and 6: (red)
“no SW”, H = 0.5, θ = 0.5◦; (black) “SW buildup”, H = 1.0,
θ = 0.5◦; and (blue) “SW growth”, H = 1.5, θ = 1.5◦. Time
is plotted in normalized units (the scale for time is t0 = 46
s). (b) front position as a function of time, xtip(t). The front
velocity is reduced to 0.42 for “no SW”, maintained at 0.66
for “SW buildup”, and increased to 0.87 for “SW growth”.
In dimensional units, these are velocities of 2.3 m/s, 3.6 m/s,
and 4.7 m/s.

downslope direction.

The third phase is demonstrated in Figs. 5c, 6c, and
7. We call this phase “SW growth”. This phase is char-
acterized by a SW that initially grows exponentially. It
is seeded from the obstacle generating a sequence of SW
crests in the downstream direction. The wave then mi-
grates slowly upstream. The obstacle is removed from the
substrate by the early flows and the subsequent evolution
has no memory of the initial obstacle. It should be noted

that the initial substrate profile is always steep enough to
support self sustainment. Further characteristics of this
phase are shown in Fig. 6c. The flow is significantly su-
percritical over the body and is marginally supercritical
near the head as evidenced by the F2 profile. It shows
structure in the velocity, concentration, F2, and erosion
parameter, V 5

shr that is synchronised to the SW struc-
ture. A distinguishing characteristic of this phase is the
appreciable erosion evidenced by the V 5

shr profile. It also
shows a exponentially growing (from head to tail) wave
structure that is synchronised to the SW structure. Fig-
ure 7 shows that m(t) is monotonically increasing and
approaches an asymptote that is about twice the initial
mass. The front velocity of 0.87, 4.7 m/s in dimensional
units, is elevated. The characteristics of the deposited
beds shown in Fig. 5c, are quite complex. There are dis-
tinct beds for each flow. There is an overprint of a com-
plex structure as the SW migrate upstream and erode
into the substrate.

The picture of these phases is completed by a much
larger set of simulations that were done over a large range
of lock height, H, and slope angle, θ0. For each of the
simulations the flow was classified by what phase of SW
developed (“no SW”, “SW buildup”, or “SW growth”).
The results are displayed in Fig. 8. This figure divides
the H-θ0 plane into three regions depending on the phase
of the SW. The three exemplars shown in the previous
three simulations are indicated as the black points on
this figure. As H increases, θ0 can be reduced and still
maintain the SW phase. You can now see why we had
to increase the angle, as well as the initial flow height, to
have the third case be in the “SW growth” phase. This
figure is a cut through the phase space at constant initial
particle concentration, c0, and particle size, {di}. The
behavior of the phase diagram with these remaining two
variables will be explored in the next two subsections.

C. Effect of particle concentration

We now move onto a study of the effect of initial lock
concentration, c0, on the development of the SW. With
respect to the previous section, we fix the current height
at H = 1.5 and study the dependance of the SW devel-
opment on both c0 and the slope angle, θ0. It should
be noted that changing c0 has a direct effect on the sys-
tem’s time scale through t0 = L0/ub, where the buoyancy
velocity is ub =

√
gR∗c0L0. In Fig. 9 the substrate struc-

ture after 80 flows is shown for three different cases, each
representative of one of the phases found in the previous
section. This figure is analogous to Fig. 5 of the previous
section.

A much larger set of simulations is used to define the
the three regions corresponding to the phases of the SW,
in a c0-θ0 plane (where the initial lock height, H, and and
particle size, {di} are constants). This phase diagram is
shown in Fig. 10, and is analogous to Fig. 8 of the
previous section. Two lines divide this plane into areas
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FIG. 8. Phase diagram for SW in the H-θ0 plane, where
H is the initial lock height in normalized units and θ0 is the
initial slope of the substrate. The three regions are identified
according to the phase of the SW: (red) “no SW”, (yellow)
“SW buildup”, and (green) “SW growth”. The points simu-
lated in Figs. 5 to 7 are plotted as black dots and labeled (a,
b, and c) consistent with those previous figures.

of “no SW”, “SW buildup”, and “SW growth”. As c0
increases θ0 can be reduced and still maintain the SW
phase. The three exemplars shown in Fig. 9 are indicated
as black points on this figure.

A closer look is taken at the dependance of the SW
wavelength, λ, by studying two “SW growth” cases with
different values of c0. These cases have c0 values of 0.6%
and 1.2%, and slope angles of 2◦ and 1.5◦, respectively.
The substrate structure after 80 flows is shown in Fig.
11. Note that for the increase of c0 by a factor of 2,
the wavelength has decreased by a factor of

√
2 from

430 m to 310 m. This is consistent with the decrease in
the time scale by a factor

√
c0 with the increase of c0.

This dependance is further established by a larger set of
simulations whose results are shown in Fig. 12. Here
the wavelength of the SW is plotted versus the initial
concentration. Notice the good fit of these points to a
line of the form λ ∝ 1/

√
c0. We also studied the effect

on λ of variation in the other controlling variables (H,
θ0, and {di}). We found that there was weak or little
dependance on these variables.

D. Dependance on particle diameter

Finally, we turn our attention to the effect of particle
diameter, d, on the development of the SW. We fix the
lock height at H = 1.5, the number of grain types at one,
and the initial particle concentration at c0 = 0.8%, and
study the dependance of the SW development on both d
and the slope angle, θ0. We present two cases in Figs.
13 and 14, where we display the substrate structure after
25 flows. The particle diameters are 600 µm and 1000

FIG. 9. Development of SW on a substrate after 80 flows,
to study the effect of the particle concentration, c0. The x-
y image is colored according to the average grain diameter.
The initial obstacle has the reduced height shown in Fig. 4.
The color bar is a rainbow, starting from 450 µm at blue and
ending at 600 µm at red. The profiles are shown for: (a) “no
SW”, c0 = 0.4%, θ0 = 0.5◦; (b) “SW buildup”, c0 = 0.6%,
θ0 = 1.0◦; and (c) “SW growth”, H = 1.2%, θ0 = 1.5◦.

µm (Rpi = 56 and 120), with slope angles of 1.0◦ and
1.5◦, respectively. The two cases display a very similar
development of “SW growth” to Figs. 5c and 6c. As
the grain diameter increases, the particle mass and the
settling velocity increases, leading to more difficult resus-
pension. To obtain a similar SW growth for the larger
grain diameter, the slope needs to be increased.

A much larger set of simulations is used to define the
the three regions corresponding to the phases of the SW,
in a d-θ0 plane (where the initial lock height, H, and
initial particle concentrations, c0, are constants). This
phase diagram is shown in Fig. 15, and is analogous
to Fig. 10 of the previous section. Two lines divide
this plane into areas of “no SW”, “SW buildup”, and
“SW growth”. The two exemplars shown in Fig. 13 are
indicated as black points on this figure.

To establish a further connection between SW gener-
ation and resuspension, systems with two different lock
widths, W , were examined – a width of 4 as in all pre-
vious simulations, and a reduced width of 2. Fig. 16
shows the change in the boundary of the “SW growth”
phase in the d-θ0 plane with this decrease in W . This
boundary is given by the critical angle, θc as a func-
tion of grain diameter, d. For this narrower lock, fewer
particles are included in the current which increases the
critical angle for the same diameter. The two critical
angle curves, θc(d), are compared to the normalized in-
verse of the resuspension term, Es. The Dietrich relation
for the settling velocity with a characteristic normalized
shear velocity of Vshr = 0.15 is used to calculate Es. The
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FIG. 10. Phase diagram for SW in the c0-θ0 plane, where c0
is the initial particle concentration and θ0 is the initial slope
of the substrate. The three regions are identified according to
the phase of the SW: (red) “no SW”, (yellow) “SW buildup”,
and (green) “SW growth”. The points simulated in Fig. 9
are plotted as black dots and labeled (a, b, and c) consistent
with the previous figure.

FIG. 11. Development of SW on a substrate after 80 flows,
to study the effect of the particle concentration, c0, on the
wavelength of the SW, λ. The x-y image is colored according
to the average grain diameter. The initial obstacle has the
reduced height shown in Fig. 4. The color bar is a rainbow,
starting from 450 µm at blue and ending at 600 µm at red.
The profiles are shown for: (a) c0 = 0.6%, θ0 = 2.0◦, where
λ = 430 m; and (b) c0 = 1.2%, θ0 = 1.5◦, where λ = 310 m.

good correlation between these curves, θc(d) and E−1
s (d),

shows that SW generation is highly correlated to the re-
suspension mechanism.

IV. CONCLUSIONS

After using a high resolution 2D computer simulation
model of turbidity currents based on the Navier-Stokes

FIG. 12. Dependance of SW wavelength, λ, on the initial
particle concentration, c0. The result of a set of simulations
similar to those shown in Fig. 11 (H = 1.5 and θ0 = 1.5◦)
are shown as the blue line. A fit to the data of the form
λ = λ1

√
c1/c0, where λ1 = 344 m and c1 = 1.0%, is shown

as the dashed red line.

FIG. 13. Development of SW on a substrate after 25 flows,
to study the effect of the particle diameter, d. The x-y image
is colored according to the average grain diameter. The initial
obstacle has the reduced height shown in Fig. 4. The color
bar is a rainbow, starting from 200 µm at blue and ending
at 1000 µm at red. The profiles are shown for: (a) d = 600
µm (Rpi = 56), θ0 = 1.0◦; and (b) d = 1000 µm (Rpi = 120),
θ0 = 1.5◦.

equations, we have developed a more complete under-
standing of sediment wave generation. This method took
into account non-linearity, used a realistic erosion model,
and modeled the depth dependant behaviour in a self
consistent and self generating way. The geometry was
a lock release of a particle laden fluid onto a slope with
a small obstacle. Many flows were simulated, the next
flow started after the previous flow had completed. The
obstacle is only a trigger for the sediment wave genera-
tion. After several flows, the obstacle was eroded by the
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FIG. 14. Particle volume concentration of the flow in the
x-y plane at the normalized time, t = 8, for flow, f = 25, to
study the effect of the particle diameter, d. This corresponds
to simulations of Fig. 13. The color bar is a rainbow, starting
from 0 at blue and ending at 0.015 at red. Also shown are
the depth averaged current variables: (blue) velocity U × 100
in m/s, (white) concentration C × 2 × 104, (green) current
height h in m, (red) change in Froude number F2 × 200, and
(yellow) shear velocity term in the resuspension V 5

shr×5×106

in (m/s)5. All quantities plotted have SI dimensions. The
profiles are shown for: (a) d = 600 µm (Rpi = 56), θ0 = 1.0◦;
and (b) d = 1000 µm (Rpi = 120), θ0 = 1.5◦.

resuspension and a SW was generated, characterized by
the most probably wavelength, λ = 2πh, derived by Nor-
mark et al. 10 . This is independent of any details of the
initial obstacle.

The feedback mechanism responsible for the genera-
tion of SW comes from an interaction of the flow with
the lower boundary condition. This complex boundary
condition modifies the topology of the boundary through
the deposition of particles from the fluid and resuspension
of particles from the substrate. The increased slope on
the downstream side of an obstacle increases the kinetic
energy in a flow. This will increase the resuspension, by
increasing the shear in the fluid and the net effect will
be increased erosion. This erosion into the substrate,
creates a subsequent decrease in slope. As subsequent
flows climb this decrease in slope, their kinetic energy
decreases leading to increased deposition. This creates
another obstacle downdip of the original one. The pro-
cess then continues to generate a train of self generated

FIG. 15. Phase diagram for SW in the d-θ0 plane, where
d is the particle diameter and θ0 is the initial slope of the
substrate. Range of d displayed corresponds to Rpi = 30 to
120. The three regions are identified according to the phase of
the SW: (red) “no SW”, (yellow) “SW buildup”, and (green)
“SW growth”. The points simulated in Fig. 13 are plotted as
green dots and labeled (a and b) consistent with the previous
figure.

FIG. 16. Critical angle for SW growth, θc as a function of
grain diameter, d, for two different lock widths, W . The θc(d)
curves are shown a red solid lines. A theoretical expression for
the resuspension, Es, is compared to these curves by plotting
the function A/Es, where A = 1.77 fits the W = 4 curve,
and A = 2.42 fits the W = 2 curve. These fit expressions are
plotted as dotted black lines.

and self consistent obstacles in the downstream direction.
This self consistent train of obstacles is the SW.

There is an upward migration of the SW caused by an-
other feedback mechanism. Once the SW is established,
the flow will preferentially deposit on the parts of the
wave with increased slope and preferentially erode the
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parts of the wave with decreased slope. The result will
be a migration of the wave updip.

Conditions are not always favorable for having this
feedback. We found that there are four system parame-
ters that influence the sediment wave growth: (1) slope,
θ0; (2) current lock height, H; (3) grain lock concentra-
tion, c0; and (4) particle diameters, {di}. Three phases of
the system were found: (1) “no SW”, (2) “SW buildup”,
and (3) “SW growth”. These phases are characterized by
whether or not the conditions are favorable for the feed-
back which leads to SW growth. For the first phase, the
conditions are always unfavorble. For the second phase,
the conditions are sometimes favorable (on the downs-
lope side of the obstacle). For the third phase, they are
always favorable. The conditions are determined by the
parameters. This allowed us to do systematic parameter
studies and define three regions in the four dimensional
(θ0, H, c0, d) space according to the phase of the system
– the phase diagram.

It should be noted why we only considered the four
variables (θ0,H,c0,d). An analysis of dimensionless par-
tial differential Eqs. (6)–(8) for ω, ψ and {ci} indicates
that there should be three governing parameters associ-
ated with the gravity unit vector, ĝ, typical vorticity, ω0,
and the average settling velocity, 〈usi〉. Here we have
reduced the set of particle concentration equations, over
index i, to only one for the total concentration, c. We
have neglected first order, ∆d (sorting), and higher or-
der effects on the substrate phase. The dependance on
Re and Pe have been neglected because of the reasons
stated in Sec. II C. Although the dependance on c0 is
normalized out of these equations, it is reintroduced by
the resuspension in Eq. (13). We now have four gov-
erning parameters. The average 〈usi〉 can be associated
with the particle size d, ĝ can be associated with θ0, the
resuspension with c0, and finally ω0 can be associated
with H. The lock height, H, is really a surrogate for
the flow size. Little dependance was found to the aspect
ratio, W/H, of the lock by Blanchette et al. 3 , and the
dependance on the lock width, W , can be normalized out
of the problem by Lo. We now see that the four govern-
ing parameters can be associated with the four variables
that were studied.

Each phase was found to be characterized by several
different things. The first and most simple phase, “no
SW”, has a simple structure. There in no development
of SW or periodic structures in the flow. The flow has
a monotonically decreasing mass as a function of time.
There is no significant erosion. The deposited substrate
has little evidence of the individual flows. It appears to
have one massive bed that becomes gradually more fine
grained downslope and gradually more coarse grained
from bottom to top. The second phase, “SW buildup”,
has some more structure. There is a rather rapid local
development of a SW, but this SW then reaches a steady
state profile. The flow, as a function of time, has a rel-
atively constant mass with a maximum. It shows a pe-
riodic structure in velocity, concentration and especially

F2 that correlates to the SW wave structure. There is
no appreciable erosion. The deposited substrate still has
little evidence of the individual flows. It has one massive
bed with gradually changing characteristics. It becomes
more fine grained downslope. Vertically is shows more
character than the first phase with the grain size show-
ing an gradually oscillatory behavior. The third phase,
“SW growth”, has significant structure. There is a global
development of a SW that initially grows exponentially.
The flow has a monotonically increasing mass that nearly
doubles. It shows structure in the velocity, concentration,
F2, and erosion that are sychronized to the SW structure.
It has significant erosion that increases exponentially in
the upstream direction within the flow. The deposited
substrate has distinct deposited beds for each flow that
show a complex structure.

We found that the driving force behind the establish-
ment of the SW is the self sustainment of the flow. This is
evidenced by the time evolution of the mass, the thresh-
old for the SW generation, boundaries of the SW phases,
and the functional dependance of the critical angle, θ0(d),
for various initial lock widths.

The wavelength of the SW, λ, was found to be a sig-
nificant function of the grain lock concentration, c0. It
scaled as 1/

√
c0, directly related to how the time scales.

The three other system parameters were found to have
weak or little effect on λ.

Finally, we discovered a rather direct path from the
physics of the flow to the structure of the deposited sub-
strate. Starting with the flow, the work of Blanchette
et al. 3 established two regimes depending on whether the
flow is self sustaining or depositing. Our work has estab-
lished the relationship between self sustainment within
one flow and sediment wave generation on the substrate
surface over multiple flows. In fact, there are phases of
SW formation, determined by whether the system never,
sometimes or always generates SW. The phase is deter-
mined by four system parameters, and a phase diagram
can be constructed in terms of these parameters. There
are strong indications that there is a further direct re-
lationship between the phase of SW formation and the
structure of the deposited substrate. This structure can
be identified as a geologic texture, or more commonly
called geologic facies. This is a very remarkable result –
there are physical phases that could well correspond to
geologic facies. Future work will focus on further study
on the emergent structure appearing in the deposited
substrate. Longer runs are needed to see the stationary
character of the self organization, and modern techniques
might be used to characterize the self organization. We
are also interested in understanding the effect of the sort-
ing, ∆d, on the substrate phase diagram.
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