Integration of uncertain subsurface information into multiple reservoir simulation models

Michael E. Glinsky, Bruce Asher, Robin Hill, Mark Flynn, and Mark Stanley, BHP Billiton Petroleum
James Gunning, CSIRO Petroleum
Troy Thompson, DownUnder GeoSolutions
Jerome Kalifa, and Stephane Mallat, Ecole Polytechnique
Didier Renard, Ecole des Mines
Chris White, LSU

www.oplnk.net/~glinsky
Outline

• Description of Stybarrow oil field
• Use of sparse spike inversion and the correlation wavelet
• Probabilistic wavelet derivation giving critical noise level
• Probabilistic model based inversion with uncertainty
• “Massaging” the results into the reservoir simulation model
• “Decoration” and “Enforcement”
 – adding the subseismic structure
Location of Stybarrow field
Structure map of Stybarrow field
Geologic cross section of Stybarrow

Integration of uncertain subsurface information into multiple reservoir simulation models

Page 5 4 April 2005
Seismic data and sparse spike inversion with secant amplitude extraction

2.16 s

2.40 s

Stybarrow-2
Stybarrow-3
Stybarrow-4
Stybarrow-1
Definition of secant amplitude and area

impedance vs. time

net sand = secant area * Vsand / 2 Rsand
Net sand calculated from secant area
Geometry used for inversion benchmark

8500 ft/s
2.33 gm/cc
68% N/G

7134 ft/s
2.01 gm/cc

9434 ft/s
2.37 gm/cc

400 ft

station 0 200
Inversion benchmark

- Uninverted data
- Industry inversion #1
- Industry inversion #2
- New inversion
- True value

Integration of uncertain subsurface information into multiple reservoir simulation models

Page 10 4 April 2005
Oil probability map calculated from secant amplitude
Tie of seismic data to synthetic seismic using probabilistic wavelet derivation

green = seismic
red = synthetic
Most likely probabilistic wavelet compared to correlation wavelet

-60 ms

0 ms

60 ms

note: probabilistic wavelet is much shorter than correlation wavelet
Most likely probabilistic wavelet compared to ensemble of possible wavelets

-20 ms

0 ms

20 ms

note: noise is 17% size of oil reflector, SNR is 15 dB
Probabilistic model based inversion

• Layer based model built at seismic loop scale using sparse spike inversion
• Standard rock physics correlations estimated with uncertainty
• Fundamental properties of layers are:
 – net-to-gross ratio (N/G)
 – layer top and base
 – fluid type
• Ensemble of models generated that are consistent with seismic to within estimated noise level
Ensemble of models at Stybarrow-1 well location show effect of model based inversion.

Before realization:
- 2.2 s
- 2.4 s

After realization:
- Soft acoustic impedance
- Hard acoustic impedance
Effect of model based inversion on match of synthetic seismic to seismic data

before after

2.24 s 2.36 s

seismic
Inversion tightens the range of possible net sand

probability of oil increased to 97% from 50% (oil in sand at this location)
Effect of inversion on estimation of N/G in main hydrocarbon (krieged to wells)
Estimation of oil probability

well control only

inversion only

0%

100%
Cross sections of mean model

2.16 s

2.40 s

before

after
Net sand prediction ahead of drill bit

<table>
<thead>
<tr>
<th>well</th>
<th>prediction (m)</th>
<th>result (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stybarrow-3</td>
<td>9.1 ± 6.4</td>
<td>2</td>
</tr>
<tr>
<td>Stybarrow -4</td>
<td>12.3 ± 4.3</td>
<td>7.6</td>
</tr>
</tbody>
</table>

40% probability well values larger deviation than observed
Results of model based inversion "massaged" onto reservoir model

- Lateral correlation added
- Short range noise eliminated
- Put onto irregular corner point geometry
- Fault blocks honored
- Inter-layer and inter-property correlation honored
Difference between the seismic grid and the reservoir simulation grid

seismic grid

reservoir simulation grid

1.2 km x 1.2 km
Effect of massaging on mean net sand map

before

after

7 km x 7 km

Integration of uncertain subsurface information into multiple reservoir simulation models

Page 25 4 April 2005
Realizations of net sand generated by massager.
Integration of uncertain subsurface information into multiple reservoir simulation models

Cross sections through model realizations

Note: models in depth
Reservoir simulation models are “decorated with subseismic structure”.

- **before decoration**
- **after proportional decoration**
- **after offlapping decoration**

![Graph showing different stages of decoration](image-url)

Integration of uncertain subsurface information into multiple reservoir simulation models

Page 28 4 April 2005
Conclusions

• Ensemble of reservoir simulation models consistent with:
 – Seismic data
 – Well information
 – Geologic concepts

• Gives:
 – Volumetric distributions
 – Minimum net sand (well completion)
 – Etc.

• Range of production profiles
 – Potential production
 – Risks for development