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Collisional drag between a bound positron and a background positron plasma is considered as
a mechanism for guiding-center antihydrogen atoms to relax to deeply bound states. Contrary
to previous assessment, an adiabatic cutoff to the drag is predicted at deep binding, when the
bound positron’s E × B drift speed vd exceeds the plasma positron thermal speed. In this regime,
small-impact parameter collisions neglected in the drag calculation become the dominant 3-body
recombination mechanism. At shallow binding, when ξ = vd/v̄ << 1, the atom’s energy loss rate
due to drag scales like ξ2 log2 ξ. When ξ >> 1 the adiabatic cutoff takes over and the rate scales
as ξ−1/3 exp(− 3

2
(2ξ)2/3). The adiabatic cutoff implies that collisional drag can only assist positron-

antiproton recombination up to a finite binding energy.

INTRODUCTION

Current attempts to produce anti-hydrogen [2] [3] em-
ploy nested Penning traps to immerse antiprotons in a
cold positron plasma. At the cryogenic temperatures
used in the experiments, the plasma is in the regime of
strong magnetization, where the dimensionless param-
eter χ ≡ v̄

Ωcb = rc

b << 1. Here v̄, Ωc, and rc are
the positron thermal speed, cyclotron frequency, and cy-
clotron radius respectively and b = e2/kBT is the dis-
tance of closest approach. In this regime, three-body
recombination is predicted to be the rate-limiting recom-
bination mechanism. The recombination rate R3 is dom-
inated by a kinetic bottleneck at binding energies U of or-
der 4kBT [4]. At this weak binding energy, the positron-
antiproton pair form a “guiding center atom”, where the
positron E × B drifts around the antiproton at a dis-
tance r of order b, and oscillates along the magnetic field
in the antiproton’s potential well (Fig. 1). Assuming for
simplicity that the antiproton is stationary, O’Neil and
Glinsky calculated that R3 = 0.07n2v̄b5 where n is the
plasma positron density.

Here, we consider a different rate: the energy loss rate
γ. The above-quoted theoretical rate R3 is actually the
rate at which atoms form with binding energies greater
than 4kBT . Beyond this bottleneck, atoms have a good
chance of eventually falling to the ground state without
being re-ionized. However, 4kBT is still relatively shal-
low binding. The energy loss rate γ is the average rate
at which guiding-center atoms move to deeper binding
once they are past the bottleneck. This rate is of interest
because in current experiments, various effects limit the
time available to the atoms to completely recombine to
the ground state: for example, atoms can drift out of the
plasma where they may encounter strong electric fields
that re-ionize them unless they are deeply-bound.

The energy loss due to three-body collisions is due to
two processes: close collisions with impact parameters
ρ less than the atom size r, and distant collisions with
ρ > r. Each process has been considered previously. In
ref. [4], the close collisions with ρ < r were shown to
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FIG. 1: A guiding center atom. The positron E×B drifts in
the electric field of a stationary antiproton while oscillating
back and forth along the magnetic field in the potential well of
the antiproton. The drift orbit frequency ω ≈ ec

Br3 at shallow
binding and is slower than oscillations parallel to the field.

produce an energy loss rate that scales as

γclose ≈
nv̄b2

ε2
, (1)

where ε = U/kBT is the scaled binding energy. This
rate clearly decreases as the atom falls to tight binding
because the cross-section for close collisions is reduced as
the atom becomes smaller.

The energy loss rate due to distant collisions with ρ > r
was considered by Men’shikov and Fedichev [1], and it
is this work which we re-examine here. These authors
found that distant collisions cause a drag force on the
bound positron that causes it to move to deeper bind-
ing. Furthermore, they observed that the more tightly-
bound the positron, the faster it moves, and the larger
the drag force, leading to an energy loss rate that mono-
tonically increases with binding energy, eventually dom-
inating over the rate due to close collisions.

However, these authors neglected the effect of the
bound positron’s E × B drift motion on the collisional
drag coefficient. Here, we show that when this motion is
included, an adiabatic cutoff of the drag force is encoun-
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tered at tight binding. When the drift speed of the bound
positron becomes larger than the plasma positron ther-
mal speed, the plasma positrons can no-longer respond
to the bound positron’s rotational E × B drift motion.
As a result, we find that collisional drag due to distant
collisions is no-longer important at deep binding, but can
play an important role at shallow binding energies, de-
pending on the specific parameters of the experiment (i.e.
the value of χ, which depends on plasma temperature and
magnetic field strength). In particular, we find that the
adiabatic cutoff occurs for scaled energies ε near

εcutoff =

√

1

χ
=

√

b

rc
.

MOBILITY CALCULATION

Plasma positrons streaming past the atom along
the magnetic field impart random kicks to the bound
positron and give it diffusive mobility in the potential
well of the antiproton. If the diffusion tensor D is known,
then the ensemble averaged flux Γ of positrons bound in
a potential field φ is given by the Einstein relation [5]

Γ ≡ Γd + Γm = −D ·
(

∇n +
en

kBT
∇φ

)

.

The mobility flux Γm to lower binding energy is given by
the second term. Thus, a single positron will, on average,
move to deeper binding with velocity

v =
Γm

n
= −D · e

kBT
∇φ.

Let us assume cylindrical coordinates centered on the
antiproton with the magnetic field oriented along ẑ, the
unit vector in the z direction (Fig. 1). For simplicity, we
neglect the bound positron’s bounce motion along the
magnetic field and consider only the cross field drift mo-
tion. In this limit, binding energy takes the point particle
form

U =
e2

r
.

(Note that the positron’s perpendicular kinetic energy is
neglected in the guiding center approximation.) Since
we expect the diffusion tensor to be diagonal in cylindri-
cal coordinates, we can let Dr be the diffusion coefficient
in the radial direction. Because r̂ is parallel to ∇φ, Dr

represents the positron’s mobility in the background po-
tential well of the antiproton. The change in binding
energy U is given by

∂U

∂t
= −ev · ∇φ =

Dre
2

kBT
(∇φ)

2
. (2)

Recalling that the positron E×B drifts in the potential
field φ, we can use

vd =
c

B
ẑ ×∇φ

to rewrite Eq. (2) in terms of the drift velocity magnitude
vd.

∂U

∂t
=

Dre
2

kBT

(

vdB

c

)2

The energy loss rate γ is

γ ≡ 1

U

∂U

∂t
=

rDr

kBT

(

vdB

c

)2

(3)

With a known diffusion coefficient and drift velocity,
Eq. (3) gives us the rate at which a bound positron moves
to deeper binding. The diffusion coefficient depends on
relative motion between plasma positrons and the bound
positron. The adiabatic cutoff mentioned above mani-
fests through this diffusion coefficient.

To calculate the diffusion coefficient, we employ the
the collisional definition

Dr =
1

2

〈

ν∆r2
〉

, (4)

where ν is the frequency of collisions between the bound
positron and passing plasma positrons and ∆r is the
displacement along r experienced during each collision.
Consider a guiding center atom immersed in a magne-
tized positron plasma. The bound positron orbits the an-
tiproton with frequency ω = vd/r. To first order, plasma
positrons are confined to move along magnetic field lines
at a constant velocity vz . As each plasma positron travels
by the atom, its electric field perturbs the drift velocity
of the bound positron by

v1(t) =
ce

B

(r(t) − rp(t)) × ẑ

|r(t) − rp(t)|3
.

Here r(t) is the position of the bound positron, and rp(t)
is the position of the passing plasma positron (Fig. 1).
Without loss of generality, we can let the passing positron
pass through the z = 0 plane at t = 0 when the bound
positron is at θ = 0 in its orbital cycle. We can therefore
write

r(t) = r (cosωt x̂ + sin ωt ŷ)

rp(t) = xpx̂ + ypŷ + vztẑ.

If rp >> r, the radial component of the bound positron’s
velocity perturbation is

vr = v1 · r̂ =
ce

B

(xp sin ωt − yp cosωt)

(x2
p + y2

p + v2
z t2)3/2

.
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Integrating over all time gives the radial displacement
from one collision,

∆r = −2
ce

B

yp

vzr2
p
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, (5)

where K1 is the first modified Bessel function of the sec-
ond kind. For a positron plasma in thermal equillibrium,
Eq. (4) takes the form

Dr =
1

2

∫

d2rpdvzfe |vz |∆r2 (6)

where fe(vz) = n√
2πv̄

e−v2

z/2v̄2

is the thermal equilibrium

distribution in at density n. Using this distribution with
Eqs. (5) and (6) and integrating over the spatial variable
θ, we obtain

Dr = 2

∫ ∞

−∞

dvz

∫ ∞

rmin

drprp

(ce

B

)2 ω

|vz|3
K2

1

(

ωre

|vz|

)

fe.

(7)
The lower bound of the radial integral rmin is on the order
of the atom radius r. Collisions occuring at smaller radii
are no longer accurately modeled by unperturbed passing
positron orbits, and are neglected in this drag calculation.

The additive contribution to γ is estimated by Eq. (1).
If we let rmin = r and switch to scaled variables s ≡
ωrp/v̄ and x ≡ vz/v̄,

Dr =
1√
8π

( c

B

)2 meω
2
p

v̄
F(ξ) (8)

with

Fξ ≡
∫ ∞

ξ

sds

∫ ∞

−∞

K2
1

(

s

|x|

)

e−x2/2

|x|3
dx. (9)

Here ω2
p = 4πe2n/me is the square of the positron plasma

frequency and

ξ ≡ ωr

v̄
=

vd

v̄
(10)

is the “adiabaticity parameter”. The function F(ξ) has
the limiting forms

F(ξ) ≈ ln2 ξ for ξ << 1 (11)

and

F(ξ) ≈
√

π3

6
ξ−1/3e−

3

2
(2ξ)2/3

for ξ >> 1. (12)

Thus, as the positron drift speed ωr increases above the
average thermal speed v̄, the adiabatic cutoff manifests
through a drop in the positron’s diffusion coefficient.

To write the energy loss rate γ in terms of the positron
drift frequency, we use Eq. (3) and replace vd = ωr:

γ =
r√
8π

(ωr

v̄

)2 ω2
p

v̄
F

(ωr

v̄

)

.
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FIG. 2: The normalized recombination rate
√

8πχΩcγ/ω2

p due
to distant collisions (solid line) plotted against the adiabatic-
ity parameter ξ = ωr/v̄. We have assumed ω = ec/Br3. The
limiting forms for ξ << 1 (dotted line) and ξ >> 1 (dashed
line) are also shown. The drop in γ at high ξ comprises the
adiabatic cutoff.

At shallow binding energies, the drift frequency ω can be
expressed as

ω ≈ ec

Br3
.

Using this scaling, we can write an expression for γ in
terms of the adiabaticity parameter ξ:

γ =
1√
8πχ

ω2
p

Ωc
ξ3/2F(ξ). (13)

The energy loss rate is plotted in Figure 2 (the solid
line), and compared to the asymptotic forms (11) and
(12) at large (dashed) and small (dotted) adiabaticity
parameter ξ. While our form for γ agrees with Ref. [1]
for ξ << 1, our loss rate cuts off exponentially when
ξ >∼ 1. Consequently, energy loss due to distant collisions
becomes unimportant when ξ > 1.

DISCUSSION

Over a range of binding energies, collisional drag can
be an important mechanism for relaxation to deeper
binding in a guiding center atom. However, we have seen
that the effect cuts off at a finite binding energy. To
compare with the close collisions studied by Glinsky and
O’Neil, we shift to scaled variables:

ε = U/kBT

τ = tnv̄b2.

Using the shallow binding energy scaling ω ≈ ec/Br3,
the adiabaticity parameter is given by

ξ =
ωr

v̄
≈ ε2χ.
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FIG. 3: The rate γ̂ at which energy is lost from the bound
charge system due to mobility drag (for Athena and ATRAP
parameters); and for Glinsky-O’Neil small impact parameter
collisions (dashed line). Drag dominates over a finite range in
binding energy, depending on the factor χ.

Now we can write Eq. (13) in terms of χ and binding
energy ε

γ̂drag ≡ γdrag

nv̄b2
=

√
2πε3χ2F

(

ε2χ
)

. (14)

From Eq. (1), the scaled energy loss rate due to close
collisions is

γ̂close =
1

ε2
. (15)

Figure 3 shows both energy loss rates. The drag is given
for the parameters of the Athena (B = 3×104 G and v̄ =
1.51 × 106 cm/s =⇒ χ = 0.0257) [3] and ATRAP(B =
5.4 × 104 G and v̄ = 8.0 × 105 cm/s =⇒ χ = 2.11 ×
10−3) [2] experiments. At deep binding, energy loss due
to drag mobility cuts off exponentially. Thus, short range
collisions dominate at deep binding.

Both rates shown in the figure are calculated in the
guiding-center-atom regime. When binding becomes very
deep, the positron cyclotron motion becomes coupled to
the orbital drift motion and the atom becomes chaotic.
This occurs when

ω ≈ Ωc, (16)

where rc is the positron cyclotron radius. We can write
Eq. (16) in terms of the normalized binding energy ε and
the parameter χ.

ω

Ωc
= ε3χ2 = 1

The approximate binding energy εc at which the atom
becomes chaotic is given by

εc = χ−2/3.

For the Athena parameters εc ≈ 11.5 and for ATRAP
εc ≈ 61 (gray areas in Fig. 3). For these experiments,
γdrag cuts off close to where the positron orbit becomes
chaotic.

Figure 3 shows that small impact parameter collisions
dominate at very shallow and at very deep binding, but
that long range collisions can be important at interme-
diate binding energies. However, note that the precise
location of the adiabatic cutoff in Figure 3 depends on
our choice for rmin in Eq. (7). We assumed rmin = r, but
taking rmin larger would move the cutoff to lower energy,
further reducing the effect of long-range collisions. Also,
a Vlasov wake calculation to be presented in a future pa-
per suggests an even steeper functional form for the adia-
batic cutoff. While the existence of an adiabatic cutoff at
ξ ≈ 1 is incontestable, its precise form and location are
not known. To fully answer this important question, one
must consider short and medium range collisions with a
computer simulation and graft that result onto our drag
calculation. This work is currently underway.
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