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There is a velocity analysis bottleneck in
prestack migration @

velocity model
v(x,y,z)
{ ray trace

form prestack
migrated gathers

pick events J‘-J
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Why does this bottleneck exist? @

B iterative process of converging to velocity model is limited by
picking events

B picking is currently performed manually
— 2D datasets, >10,000 traces
B not feasible with larger datasets
— 3D datasets, >1,000,000 traces
B done manually for quality control
— eliminate “loop skips”
B goal is to automate the event picking process
— manual picks only for training and “context”
— reduce manual picking to less than 0.1% of data
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Neural networks automate picking and tracking

of events on CRP panels
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Several basic ideas and issues guide this work

use the simplest techniques that prove to be effective
B use approach of:
— signal / image processing
— machine vision
— supervised learning techniques
B feature analysis is the key
- GIGO
B exploit information about:
— prior knowledge from human experts
— spatial context
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Processing flow @@

raw data eveni picks
é ) 4 ) a4 N\ a )
valley

feature | feature voxel finding
definition selection » classification ’ and
constraints
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Algorithms used in the processing flow @@

B feature definition
— 2D Gabor transforms
— semblance
— amplitude histogram
— proximity
B feature selection
— sequential forward selection
B voxel classification
— probabilistic neural network (PNN)
— connected components
B valley finding and constraints
— size
— continuity
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The algorithm used @

threshold
event and
features connected
components
. lley finding
proximity valley
features threshold and
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Prestack migrated data (raw data) @

:

W

B deepwater GOM
B 2D dataset
B JIGSAW prospect
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Useful features of the raw data

m statistical moment
— mean, efc.
— moment over red box
B semblance
B Gabor transforms
— magnitude & phase
— 2 scales
— 4 slopes
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Event feature images are formed

- Gabor magnitude
(large, 0°)

| Gabor magnit
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Features are ranked via Sequential Forward
Selection algorithm @
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10/8/97 PNN event picking 13



Posterior probability image using event
features as input @@

B training set A T ——

— 107 events 4 . p—
— 100 background
— 20 out of 468 CRPs

— 0.5% of picks 4.3?
B probability of correct \ 2

)
classification _E 44 ——————a..
— 89% to 96% a5l -
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input

Proximity features allow for human contextual @

offset

time
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Posterior probability image using proximity
features as input @

B 193 picks used
— 1% of picks
B mask for

constraining search
space
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Binary labeled image
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Connected components labeled image @
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Event image
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Automated picks compared to human picks
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PNN prevents loop skips in low signal to noise

data
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Neural network picker applied to 2D GOM
dataset (JIGSAW) @
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Neural network picks compare well with expert
picks @
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Neural network sometimes consistently picks
on different loop @
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Neural network picker is not as aggressive as
expert @@

0 subpoint 9 km
0
time of offset
event pick
2.2s 4 km
3s PNN
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Computer time needed

B 15 ms/voxel / feature

— interpreted MATLAB

— PowerBook 5300c

— 7 features used (6 Gabor, raw data)
B 60 us / voxel / feature

— Sparc Ultra 1

— compiled C++

— 7 days for 4 OCS blocks
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Summary and future work

Gabor transform captures character of event
— better than semblance and amplitude histogram
PNN combines features into best guess
— prevents loop skips
proximity is a way to quantify where to look
could enable 3D PSDM
— cost reduced from $75,000 to $6,000 (4 OCS blocks)
— cycle time reduced from 12 weeks to 1 week
— improve robustness of inversion (more picks)
further evaluation needed on other datasets
tracking of PNN result needs to be improved (aggressiveness)

10/8/97 PNN event picking

27



