Automatic event picking in prestack migrated gathers using a probabilistic neural network

Michael Glinsky, Bill Butler, Sandhya Devi and Jim Robinson
Shell E&P Technology Company

Greg Clark
Lawrence Livermore National Laboratory

Peter Cheng and Gary Ford
University of California, Davis
Agenda

- introduction and problem definition
- overview of processing scheme
- detailed example of algorithm application
- summary and future work
There is a velocity analysis bottleneck in prestack migration

- Velocity model $v(x,y,z)$
- Pick events
- Update the velocity model
- Ray trace
- Form prestack migrated gathers
Why does this bottleneck exist?

- iterative process of converging to velocity model is limited by picking events
- picking is currently performed manually
 - 2D datasets, >10,000 traces
- not feasible with larger datasets
 - 3D datasets, >1,000,000 traces
- done manually for quality control
 - eliminate “loop skips”
- goal is to automate the event picking process
 - manual picks only for training and “context”
 - reduce manual picking to less than 0.1% of data
Neural networks automate picking and tracking of events on CRP panels.
Several basic ideas and issues guide this work

- use the simplest techniques that prove to be effective
- use approach of:
 - signal / image processing
 - machine vision
 - supervised learning techniques
- feature analysis is the key
 - GIGO
- exploit information about:
 - prior knowledge from human experts
 - spatial context
Processing flow

raw data

feature definition

feature selection

voxel classification

valley finding and constraints

event picks
Algorithms used in the processing flow

- feature definition
 - 2D Gabor transforms
 - semblance
 - amplitude histogram
 - proximity

- feature selection
 - sequential forward selection

- voxel classification
 - probabilistic neural network (PNN)
 - connected components

- valley finding and constraints
 - size
 - continuity
The algorithm used

- Event features
 - PNN
 - Threshold and connected components

- Proximity features
 - PNN
 - Threshold
 - Valley finding and constraints

Event image
Prestack migrated data (raw data)

- deepwater GOM
- 2D dataset
- JIGSAW prospect
Useful features of the raw data

- statistical moment
 - mean, etc.
 - moment over red box
- semblance
- Gabor transforms
 - magnitude & phase
 - 2 scales
 - 4 slopes
Event feature images are formed

- Gabor magnitude (large, 0°)
- Gabor magnitude (large, 50°)
- Gabor phase (large, 0°)
- Mean
- Standard deviation
- Semblance
Features are ranked via Sequential Forward Selection algorithm

distance between event and background cluster used

GM = magnitude of Gabor transform
GP = phase of Gabor transform
Posterior probability image using event features as input

- **training set**
 - 107 events
 - 100 background
 - 20 out of 468 CRPs
 - 0.5% of picks

- **probability of correct classification**
 - 89% to 96%
Proximity features allow for human contextual input.

offset
time
probability of event

0.0 0.2 0.4 0.6 0.8 1.0
probability of event
0.0
0.2
0.4
0.6
0.8
1.0

probability close to picked event
Posterior probability image using proximity features as input

- 193 picks used
 - 1% of picks
- mask for constraining search space
Binary labeled image
Connected components labeled image
Event image

- size
- one time / offset / cloud
- continuous
- max posterior probability
Automated picks compared to human picks

Human edited FLIRT picks

Automated picks
PNN prevents loop skips in low signal to noise data
Neural network picker applied to 2D GOM dataset (JIGSAW)
Neural network picks compare well with expert picks
Neural network sometimes consistently picks on different loop
Neural network picker is not as aggressive as expert

- Time of event pick:
 - 2.2 s
 - 3 s

- Offset:
 - 4 km

- Subpoint:
 - 0
 - 9 km

- Expert

- PNN

10/8/97

PNN event picking
Computer time needed

- **15 ms / voxel / feature**
 - interpreted MATLAB
 - PowerBook 5300c
 - 7 features used (6 Gabor, raw data)

- **60 µs / voxel / feature**
 - Sparc Ultra 1
 - compiled C++
 - 7 days for 4 OCS blocks
Summary and future work

- Gabor transform captures character of event
 - better than semblance and amplitude histogram
- PNN combines features into best guess
 - prevents loop skips
- proximity is a way to quantify where to look
- could enable 3D PSDM
 - cost reduced from $75,000 to $6,000 (4 OCS blocks)
 - cycle time reduced from 12 weeks to 1 week
 - improve robustness of inversion (more picks)
- further evaluation needed on other datasets
- tracking of PNN result needs to be improved (aggressiveness)