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• A Gaussian Process Regression model and a Deep Neural Network are 

presented for predicting shock propagation in different flow properties 

and velocity initializations.

• While GPR performs better with small datasets, the FCNN is more 

efficient in complex cases that require larger datasets for inference

Limitations and Future Work
• Both models fail to extrapolate accurate predictions when the training 

dataset does not resemble the conditions seen in the test dataset.

• Convolution operations are necessary for an understanding of the 

physics that can extrapolate and generalize to situations with a previously 

unseen number of shocks.

• Sequential wavelet transforms can act as an explainable analogue to a 

traditional Convolutional Neural Network.

We study the ability of both shallow learning methods and deep learning 

methods to predict shock behavior, with the goal of producing a model that 

can infer the underlying physics of shock propagation.

Background
Shocks are propagating discontinuities in flow parameters
• Hydrodynamic equations allow for discontinuous solutions

• Shocks appear in high energy situations such as explosions and fusion events

The Viscous Burgers’ Equation models shock behavior
● Fundamental PDE describes fluid flow, gas dynamics and acoustics in one dimension

● Derived from the Navier-Stokes Equation by neglecting pressure and body-force 

terms, and assuming incompressibility

• Eulerian method solves the Burgers equation by implementing second-

order advective and diffusive updates, after an initial velocity profile is 

specified

• Four datasets were created to explore the performance of the model in 

isolated situations -

• Single and multiple shock systems, each with both sinusoidal and 

“complex” velocity initial profiles

• Complex velocity profiles generated by randomly weighting linear 

combinations of sine, coiflet and haar wavelet profiles

• Reynolds number varied from 10 – 20 000

Gaussian Process Regression

• The input to the prediction algorithm contains the velocity initialization, 

time elapsed from the initial state, and the Reynolds number.

• Prior distribution of functions 

specified by a covariance kernel

• Posterior distribution based on 

observed data

• Five fully connected layers

• ReLU activation functions

• 512 neurons per hidden layer

• Final linear layer predicts shock 

profiles

• Trained with Adam stochastic 

gradient descent

Systems with multiple interacting shocks (four different orientations shown

below) introduce more difficulty to the inference problem.

Both the GPR and FCNN model can generate accurate predictions in these 

cases, with similar trends in accuracy.

Sample Prediction - FCNN

Shocks with sinusoidal initial profiles propagating through space

Shocks with complex initial profiles propagating through space

The GPR model and the FCNN can both predict the shock physics 

accurately when initial velocity profiles are sinusoidal and relatively similar 

across the dataset, the GPR’s ability to interpolate between datapoints results 

in a smoother prediction.

Burgers’ EquationNavier-Stokes Equation

Matérn covariance kernel with ν = 0.5 

captures discontinuity present in shocks

Sample Predictions - GPR

The FCNN has better generalization ability across different complex velocity 

initializations that require more data for inference, while GPR struggles to 

perform inference on large and high-dimensional datasets.
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