A new perspective on renormalization: invariant actions, a dynamical DNA

Michael Glinsky (CEO Science Leader)

\textit{arXiv:1106.4369}

"Three Sisters" -- aboriginal womans' place for doing business, near BHPB Yandi iron ore mine
What do we want in a metric of complexity?

- Direct relationship of metric to dynamical action
- Hierarchical in terms of order of interaction (number of cliques, phrases or scales interacting) and size
- Invariant of coordinates (independent or dependant) and stable to small changes to the dynamics (Lipschitz invariant)
- Direct relationship to group symmetries (not cemetery [sic American accent])
- Direct relationship to topological invariants (indexes)
What is wrong with Fourier?

- Invariant of coordinates
- NOT stable to small changes in the dynamics
 - at small scale, small changes in signal lead to large changes in transform
 - source of ultraviolet divergence in Wilson style renormalization leading to need for regularization
What is wrong with the wavelet transform?

• stable to small changes in the dynamics
• NOT invariant of coordinates

\[\bar{x}_{ik} = \sum_j x_j W_{ik}(t_j) \]

where \(i \) is the scale and \(k \) is the new time index
Iteration makes wavelet transform invariant of coordinate.

(unique fingerprint of texture)

previous best error rate

textons 5.4%
MRF 2.7%

invariant scattering

PCA 0.29%

independent of chaotic “phase”
Interesting development in machine vision

• Stephane Mallat’s Group Invariant Scattering
 • arXiv:1101.2286
 • arXiv:1011.3023

Gives metric on states of system

\[d^2(f, g) = \| S(f) - S(g) \|^2 = \sum_p \| S(p)f - S(p)g \|^2 \]

\[S(p)f = |\cdots | f \ast \psi_{s_1} | \ast \psi_{s_2} | \cdots | \ast \psi_{s_n} | \ast \psi_\infty | \]
Total path specified by:

scattering at scale associated with Lie Group translation of independent parameters of deformation field (e.g., k of phonon)

scattering at \(\lambda \) scale associated with GL(n) transformation of dependant parameters (deformation field, e.g., polarization of phonon)
What do we have?

- hierarchy
- invariant of coord and stable to small changes in dynamics
- direct relationships to group symmetries
- possible relationship to topological index
 - orientation as a function of scale, gives curvatures, gives indexes associated with singularity of system (future R&D)

BUT what does this have to do with dynamical systems?

Why is the modulus taken (phase removed)?
Vision problem can be thought of as dynamics

define the deformation vector field

\[\bar{\tau}(\bar{x}) = \left[\bar{\nabla} \tau(\bar{x}) - \left[\bar{\nabla} \tau(\bar{x}_o) + \left\uparrow \bar{I} \right\downarrow \right] \cdot \bar{\tau}(\bar{x}_o) \]

and the associated action

\[S[\bar{x}(t)] = \int_0^{t_o} L(\bar{x}(t), \dot{\bar{x}}(t)) dt \]

\[L(\bar{x}(t), \dot{\bar{x}}(t)) = [\dot{x} - \bar{\tau}(\bar{x})] \cdot \bar{g}(\bar{x}) \]

image is the wave function

\[f(\bar{x}, t) = \int e^{iS[\bar{x}(t)]/\hbar} \mathcal{D}[\bar{x}(t)] f(\bar{x}, 0) \]

which in the classical image gives the image deformation

\[f(\bar{x}, t) = f(\bar{x} - \phi_t(\bar{x})) = f(\bar{x} - \bar{\tau}(\bar{x}))) \]
Mallat’s invariant scattering as an iterative renormalization

Let us consider a much simpler problem of 1D time dependant dynamics (time sliced)

\[S_o[\{x_j\}] = \sum_j L(x_j, \dot{x}_j, t_j) \Delta t \]

change coordinate to “smoothed” wavelet basis which respects the group symettry of the Lagrangian

\[\bar{x}_{ik} = \sum_j x_j W_{ik}(t_j) \]

useful mean field approximation in this basis

\[
\frac{\partial S_o[\{\bar{x}_{ik}\}]}{\partial \bar{x}_{ik}} = \sum_j W_{ik}(t_j) \frac{\partial L}{\partial x} + W'_{ik}(t_j) \frac{\partial L}{\partial v} = \left< \frac{\partial L}{\partial x} \right>_{ik} + \left< \frac{d}{dt} \left(\frac{\partial L}{\partial v} \right) \right>_{ik} = \left< \nabla L \right>_{ik} + \left< \dot{p} \right>_{ik}
\]

\[
\left< \frac{\partial L}{\partial x} \right>_{ik} \equiv \sum_j W_{ik}(t_j) \frac{\partial L}{\partial x} \quad \left< \frac{d}{dt} \left(\frac{\partial L}{\partial v} \right) \right>_{ik} \equiv \sum_j W_{ik}(t_j) \frac{d}{dt} \left(\frac{\partial L}{\partial v} \right)
\]
Renormalization continues and gives the invariant actions, S_p

define the generating function and currents

$$C[\{J_{ik}\}] = \ln \left[\int \exp \left(-S_0[\{\bar{x}_{ik}\}] + \sum_{ik} J_{ik} \bar{x}_{ik} \right) \prod_{ik} d\bar{x}_{ik} \right] = \ln(Z[\{J_{ik}\}])$$

take the Legendre transform to form the effective action

$$S[\{\varphi_{ik}\}] = -C[\{J_{ik}\}] + \sum_{ik} J_{ik} \varphi_{ik}$$

$$\varphi_{ik} = \frac{\partial C[\{J_{ik}\}]}{\partial J_{ik}} \bigg|_{J=0} = \langle \bar{x}_{ik} \rangle$$

expand the integrand, evaluate by stationary phase, and integrate the wavelet transformations, one gets the remarkable form for the effective action

$$S[\{\varphi_p\}] = S_0[\langle \varphi_p \rangle] + \frac{1}{2} \sum_p \frac{\partial^2 S_0[\langle \varphi_p \rangle]}{\partial \varphi_p^2} (\varphi_p - \langle \varphi_p \rangle)^2$$

where

$$\frac{\partial S_0}{\partial \varphi_p} \bigg|_{\langle \varphi_p \rangle} = 0$$

$$S_p = \frac{1}{2} \frac{\partial^2 S_0}{\partial \varphi_p^2} \bigg|_{\langle \varphi_p \rangle}$$
Partition function decomposes by path

\[Z[\{J_p\}] = \prod_p e^{S_o(\{\varphi_p\})} \int e^{S_p (\varphi_p - \langle \varphi_p \rangle)^2 + J_p \varphi_p} \, d\varphi_p \]

\[= \prod_p Z_p(S_p, \langle \varphi_p \rangle , J_p) \]

\[\ln Z[\{J_p\}] = \sum_p \ln Z_p(S_p, \langle \varphi_p \rangle , J_p) \]

\[= \ln Z^{(0)} + \sum_{s_1} \ln Z^{(1)}_{s_1} + \sum_{s_1} \sum_{s_2 > s_1} \ln Z^{(2)}_{s_1 s_2} + \mathcal{O}(3) \]

for dissipative system that self organises, only a finite number of \(p \) have non-zero coefficients, leading to a reduction in entropy
In language of Jaynes (Physical Review ’57)

the currents \(J_p \) are the LaGrange multipliers

the average renormalized paths \(\varphi_p \) are known expectation values

the effective action

\[
S[\{\varphi_p\}] = \ln Z[\{J_p\}] + \sum_p J_p \varphi_p
\]

is the entropy

and the partition function is directly related to

\[
- \ln Z[\{J_p\}]
\]

the potential
Feynman diagram of elementary excitation by J_p

$$\left| N^{(0)}, \{ N_{s_1}^{(1)} \}, \{ N_{s_1,s_2}^{(2)} \}, \ldots \right|$$
Revisit of scattering and compact graphical representation

\[|g\rangle = a_p^\dagger |f\rangle \]
Conclusions

• Mallat has come up with a transformation (group invariant scattering) that is:
 • very useful in identification of image texture
 • hierarchical
 • invariant to group transformations
 • stable to small changes to the image

• Image identification problem can be formulated as a dynamical system with an action

• Mallat’s transformation is an iterative wavelet based renormalization of the dynamics

• the renormalized coordinates are a useful basis leading to:
 • identification of fundamental excitations of system
 • factorization of entropy
 • view of changes in the system as a scattering of the fundamental excitations
 • graphical representation of the scattering in Feynman diagrams
 • definition of metric for the states of the system
Dynamical DNA

• the invariant actions, S_p, fully characterize the dynamics
• they provide a natural basis and metric
• the set of actions are, in analogy to biology, the DNA of the dynamics
 • a coded sequence of numbers, S_p, from which the character of the dynamics can be reconstructed
 • occupation numbers, N_p, fully characterize the state of the system