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An extension of a previously developed rock physics model is made that quantifies the relationship between the
ductile fraction of a brittle/ductile binary mixture and the isotropic seismic reflection response. By making a
weak scattering (Born) approximation and plane wave (eikonal) approximation, with a subsequent ordering
according to the angle of incidence, singular value decomposition analysis are done to understand the stack
weightings, number of stacks, and the type of stacks that will optimally estimate the two fundamental rock
physics parameters. Through this angle ordering, it is found that effective wavelets can be used for the stacks
up to second order. Finally, it is concluded that the full PP stack and the “full” PS stack are the two optimal
stacks needed to estimate the two rock physics parameters. They dominate over both the second order AVO
“gradient” stack and the higher order (4th order) PP stack (even at large angles of incidence). Using this
result and model based Bayesian inversion, the detectability of the ductile fraction (shown by others to be
the important quantity for the geomechanical response of unconventional reservoir fracking) is demonstrated
on a model characteristic of the Marcellus shale play.

I. INTRODUCTION

The developing commercial significance of unconven-
tional shale reservoirs is leading to the need to be able
to remotely determine the ability to effectively fracture
the reservoir. This paper will establish the theory and
practicality of optimally estimating the ductile fraction
from an isotropic analysis of surface conventional and
converted wave seismic data. This property of a binary
ductile/brittle mixture has been shown to be the key
property in determining the geomechanical fracturing re-
sponse of an unconventional reservoir1–3. This is, most
likely, because of the balance between the “bumpy road”
friction of the fracture, due to the structurally competent
brittle member, and the viscous friction, due to the duc-
tile member. This is not the subject of this paper, but
is the topic of our ongoing research into the statistical
mechanics of fracture joint friction.

Because of unrelated physics, the same property, duc-
tile fraction, is one of two important order parameters
for the linear, isotropic, elastic response of binary mix-
tures of a structurally competent member (high coordina-
tion number) and a structurally less competent member
(lower coordination number). A very important impli-
cation of this bicritical model is that the state is only
two dimensional. The expectation, and practical reality
(as demonstrated by analysis of well log data) is that
the isotropic properties will reduce to a surface in the
three dimensional density, compressional velocity, shear
velocity (i.e., ρ, vp, vs) space. Furthermore, this surface
will be orthogonal to the vp-vs plane. This remark-
able property is captured by the floating grain model4,5

which has two state variables given by the floating grain
fraction, ff , and the compaction state as specified by
1 − exp(−Pe/P0), where Pe is the effective stress and
P0 is a reference value of effective stress. Two phase
transitions points at critical values in the radius ratio
(RRc = 4) and the fraction of small grains (V F c = 0.45)

were demonstrated, as well as two critical scalings of the
porosity about a critical point of about 42%6.

This theory was developed for a binary mixture of
brittle spheres of two different sizes. Recognizing that
the large spheres are the structurally competent member
and the small spheres are the structurally less compe-
tent member, we generalize this theory in Sec. II A. The
floating grain fraction is replaced by a general geome-
try parameter, ξ, which in the case of shales is shown
to be proportional to fd, where fd is the ductile frac-
tion. The geometry parameter captures the fabric of the
mixture such as the sorting or ductile fraction, while the
composition parameter captures the compaction, diage-
nesis, and/or mineral substitution of the mixture. An
important additional implication of the bicritical model
is a fundamental self similarity and the associated scaling
relationships7 of physical quantities such as coordination
numbers, capture fractions, and elastic moduli. It also
implies the same critical scaling for both vp and vs be-
cause they have the same units. Therefore the surface in
(ρ, vp, vs) space must be orthogonal to the vp-vs plane.

We emphasize the serendipity of the fact that the duc-
tile fraction is the coordinate of influence of both the
linear elastic response (geophysical) and the nonlinear
inelastic response (geomechanical). For the former, the
ductile material is adding density without much struc-
tural rigidity, that is elastic moduli. For the latter, it is
increasing the importance of the viscous joint friction.

Given this rock physics model, this paper exam-
ines its implication on the geophysical detectability of
ductile fraction in Sec. II B. Several questions have
been the subject of much debate within the geophysical
community8–17. For example, how many stacks should be
used in “prestack” analysis? What should those stacks
be? What is the relative value of AVO versus converted
wave data analysis? What is the value of determining
density from large angle PP data? What are the quan-
tities that should be inverted for, relative (reflectivity)
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versus absolute (impedances)? Finally, what are the “at-
tributes” that best predict reservoir performance?

We present a straight forward analytic theory in Sec.
II C and subsequent analysis that answers all of these
questions in Sec. III A. It is a linear singular value de-
composition analysis18–21 of the relationship between the
two fundamental rock physics parameters (ζ and ξ) and
the seismic reflectivities (PP and PS) as functions of an-
gle of incidence, θ. This analysis is done by assuming
a weak scattering (Born) approximation and plane wave
assumption (eikonal). It also orders the SVD using the
angle θ. Distortions caused by angle dependent noise and
by angle dependent multiplicative factors are also exam-
ined. The conclusion is that the PP full stack and the PS
“full” (linear weighted with θ or offset) stacks are opti-
mal in the estimation of ζ and ξ, respectively. They are
of zeroth and first order in θ, respectively. Conventional
AVO “gradient” stacks and large angle PP response con-
ventionally used to estimate density are of higher order
in θ (second and fourth order, respectively). Angle de-
pendent noise and multiplicative distortion modify the
weights of the full stacks and practically lead to the com-
mon taper and offset dependent scalars used. It should
be noted that these stacks are average reflectivities or
relative quantities. Linear combinations of these two im-
portant stacks (normally just the full PP stack for ζ and
the “full” PS stack for ξ) are the best “attributes”.

Although this analysis is expanded to 5th order in the
sine function of the maximum angle of incidence, sin θm,
and the expressions are valid to arbitrary large angle;
they have tenuous validity at large angle because of an in-
creasing difficulty in satisfying the eikonal and weak scat-
tering approximations at larger angles. Another manifes-
tation of this is the inability to renormalize the theory
(average at different scales). To correct this we formally
truncate the theory at second order (in the latter part
of Sec. II B) and introduce renormalization coefficients
that are essentially changes in PP wavelet amplitude, PS
wavelet amplitude, and effective incident angle as a func-
tion of scale. This theory is well known to be renormal-
izable. A practical implication is that it can be shown
to closely match the full wave solution. It is then shown
that a synthetic can be constructed using separate effec-
tive wavelets for each of the three stacks (i.e., full PP,
“full” PS, and AVO PP “gradient” stacks). This allows
us to conveniently derive the separate wavelets and renor-
malization constants by a conventional wavelet derivation
process22 using the well logs and corresponding measured
seismic data – it allows us to separate the wavelet from
the reflectivity analysis.

Finally, the practical detectability, on a synthetic ex-
ample based on the Marcellus shale play, is shown in
Sec. III. There are many factors that can complicate
and confound this analysis, such as tuning effects of mul-
tiple layers, low SNR in real data, and uncertainty in the
rock physics model. To address these issues on a pro-
totypical example, a principle components analysis and
wavelet derivation on real data are done in Sec. III B.

This includes stack weight profiles, spectral SNR anal-
ysis and wavelet profiles. The uncertainty of the rock
physics model is estimated using reasonably large well log
database from several unconventional shale plays. First,
the SVD analysis is extended to include the rock physics
uncertainty in Sec. III C and the detectability of the rock
physics parameters, ζ and ξ is determined. Second, it is
used to construct a layer based model of the Marcellus
play with uncertainty (in Sec. III D), to forward model
the synthetic, and finally to do a layer based Bayesian
inversion23,24 of this model (in Sec. III E). Very good sen-
sitivity to the ductile fraction is found in the high TOC
(Total Organic Carbon) shale layers. Significant addi-
tional sensitivity is found by using the “full” PS data, in
addition to the full PP data.

II. THEORY

A. Rock physics

We first recognize that we are dealing with a binary
mixture of a ductile and a brittle member, where the lat-
ter is more structurally competent than the former. We
take inspiration from the floating grain model4. This
model is based on two fundamental parameters – the
floating grain fraction parameterized by ξ = ff/ffc and
the compaction parameterized by ζ = 1− exp(−Pe/P0),
where ff is the floating grain fraction, ffc is the maxi-
mum or critical floating grain fraction, Pe is the effective
stress, and P0 is a reference effective stress. The model
respects fluid substitution and leads to local linear cor-
relations of the form

vp = Avp +Bvp ζ + Cvp ξ ± σvp, (1)

φ = Aφ +Bφ vp + Cφ ξ ± σφ, and (2)

vs = Avs +Bvs vp ± σvs. (3)

The second relationship can be rewritten two ways, given
ρs and ρf and the definition ρ ≡ φ ρf + (1− φ)ρs,

φ = φc −
φc
nζ

ζ − φc
nξ

ξ, and (4)

ρ = Aρ +Bρ vp + Cρ ξ ± σρ. (5)

The first, Eq. (4), identifies the two critical exponents,
nζ and nξ, and the critical porosity, φc, in the linear
expansion, as φ/φc → 0, of the following expressions for
the critical scalings of ζ and ξ, respectively:

ζ ∼
(
φc − φ
φc

)nζ
and ξ ∼

(
φc − φ
φc

)nξ
. (6)

The second, Eq. (5), is just a convenient expression to
compare to log data of shales.

For the rocks studied in Demartini and Glinsky 4 , the
regressed values are given by Avp = 5000 ft/s, Bvp = 6720
ft/s, Cvp = 1603 ft/s, σvp = 350 ft/s, Aφ = 0.592, Bφ =
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−3.14 × 10−5 s/ft, Cφ = -0.0878, σφ = 0.0093, Avs =
-2900 ft/s, Bvs = 0.894, σvs = 226 ft/s, φc = 0.435,
nζ = 2.06, nξ = 3.11, P0 = 1290 psi, ffc = 0.09, Aρ =
1.69 gm/cc, Bρ = 5.33× 10−5 (s/ft)(gm/cc), Cρ = 0.149
gm/cc, and σρ = 0.016 gm/cc. We have assumed ρs =
2.7 gm/cc, and ρf = 1.0 gm/cc in these relationships.
Note that φc is the expected percolation threshold. A
very important property of this model is the form of the
vs correlation – it is only a function of vp and does not
involve either ζ or ξ. This means that the rock physics
correlates the ρ, vp, and vs values into a plane that is
orthogonal to the vp-vs plane. Characteristic values for
the rock physics parameters are ζ = 0.910 ± 0.012 and
ξ = 0.22± 0.33.

When we examine shales from many different wells and
plays, we get the results shown in Fig. 1. It is important
to note the strong linear correlation in the vp-vs plane of
Fig. 1a, and the systematic shift in the ρ-vp correlation
with the ductile fraction, fd, in Fig. 1b. Inspired by the
floating grain model, we generalize ξ to fd/fdc, where fd
is the ductile fraction and fdc is the maximum or critical
ductile fraction. Ductile fraction is defined as the ratio
of the structurally incompetent (ductile) organic matter
(TOC) and clay, to the sum of the structurally incom-
petent plus the structurally competent (brittle) quartz
and calcium carbonate. Given the range of the data, the
line in Fig. 1b shows the variation in the ρ-vp as ξ goes
from 0 to 1 for ζ = 1, and we assume that the minimum
value of vp is 9500 ft/s when ζ = ξ = 0. A regression
to this extended rock physics model leads to Avp = 9500
ft/s, Bvp = 8500 ft/s, Cvp = -4500 ft/s, σvp = 350 ft/s,
Aφ = 0.771, Bφ = −3.68 × 10−5 s/ft, Cφ = -0.1916,
σφ = 0.017, Avs = 1280 ft/s, Bvs = 0.48, σvs = 216
ft/s, φc = 0.421, nζ = 1.34, nξ = 16.4, fdc = 0.52, Aρ =
1.435 gm/cc, Bρ = 7.0× 10−5 (s/ft)(gm/cc), Cρ = 0.364
gm/cc, and σρ = 0.032 gm/cc. We have assumed ρs =
2.9 gm/cc and ρf = 1.0 gm/cc in these relationships.
We note that there was a four-fold decrease in σρ by in-
cluding the Cρ term in the regression of the datasets.
Note the reasonable value of φc. The self similarity of
the rock structure implied by this model is validated by
neutron scattering experiments25. Characteristic values
of the rock physics parameters are ζ = 0.75 ± 0.07 and
ξ = 0.70 ± 0.20. Straight forward analysis shows that
the capture fraction, as defined by Demartini and Glin-
sky 4 , scales as nξ/(nξ − nζ), is approximately equal to
the reciprocal of this exponent for states away from the
critical point, and is the ratio of the ductile coordination
number to the brittle coordination number. This gives a
capture fraction of 92% for this model, and 36% for the
floating grain work of Demartini and Glinsky 4 .

We have not explicitly identified the process and there-
fore the “activation energy” in the definition of ζ ≡
1 − exp(−E/E0). Unlike for the floating grain model,
changes in the composition are not limited to compaction
(there is probably a very large amount of diagenesis and
mineral substitution for shales), and we did not have in-
formation on what the controlling variables (i.e., effective

FIG. 1. Well log data supporting rock physics model. Points
are blocked well log data colored according to the ductile
fraction, fd. Also shown are the directions of increasing ζ
(constant ξ) as the red arrow, and increasing ξ (constant ζ)
as the green arrow. Values are normalized according to the
equation x̄ = (x−xmin)/(xmax−xmin), where min vp = 8000
ft/s, max vp = 18000 ft/s, min vs = 3800 ft/s, max vs = 11000
ft/s, min ρ = 2.1 gm/cc, max ρ = 2.8 gm/cc. (a) vs-vp trend
in normalized units. Black line is the fit trend, Eq. (3). (b)
ρ-vp trend in normalized units. Trend lines of constant ξ, Eq.
(1), are colored according to the value of fd = fdcξ. Two
reference points are shown as black dots and labeled.

stress or temperature) were for each of the well log sam-
ples. Practically, this is not a limitation since we are
not trying to estimate the energy, E, and that value will
be assumed to be a constant for a stratigraphic layer in
our analysis. This, not withstanding, there is a strong
possibility that if the compaction and diagenesis are con-
stant for a stratigraphic interval, the composition vari-
able would be diagnostic of the organic matter (TOC) to
clay ratio.

The relationship for the shift in the ρ vs. vp trend,
given Eq. (5), or equivalently the φ vs. vp trend, given
by Eq. (2), with clay fraction has also been noted by Han,
Nur, and Morgan 26 and Pervukhina et al. 27 in labora-
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tory core data.

B. Geophysical forward model

We now move to developing an understanding of both the P-to-P, RPP , and the P-to-S, RPS , reflection response
for an isotropic medium. We start by assuming weak scattering and make both the further assumptions of small
contrast (that is, ∆ρ/ρ,∆vp/vp, and ∆vs/vs � 1) and plane waves (eikonal approximation). The latter is a rather
complicated assumption on both the frequency and angle of incidence, θ. We shall return to this later in this section.
The expressions28 for the reflection response will be linear in the contrasts due to the first approximation, with
coefficients that are functions of the angle of incidence, θ, and the ratio of the velocities, rsp ≡ vs/vp,

RPP =
1

2

(
∆ρ

ρ
+

∆vp
vp

)
+

(
−2 r2

sp

∆ρ

ρ
+

1

2

∆vp
vp
− 4 r2

sp

∆vs
vs

)
sin2 θ +

1

2

∆vp
vp

sin2 θ tan2 θ, (7)

RPS = − sin θ

cos θPS

[
1

2

∆ρ

ρ
+

(
∆ρ

ρ
+ 2

∆vs
vs

)(
rsp cos θ cos θPS − r2

sp sin2 θ
)]
, (8)

where θPS is the reflected angle of the S wave. Making use of Snell’s law,

sin θPS
vs

=
sin θ

vp
, (9)

some basic trigonometric identities and combining terms of common order in sin θ, the reflectivities can be written as

RPP =
1

2

(
∆ρ

ρ
+

∆vp
vp

)
+

(
−2 r2

sp

∆ρ

ρ
+

1

2

∆vp
vp
− 4 r2

sp

∆vs
vs

)
sin2 θ +

1

2

∆vp
vp

sin4 θ

cos2 θ
, (10)

RPS =

[(
−1

2
− rsp

)
∆ρ

ρ
− 2 rsp

∆vs
vs

]
sin θ√

1− (rsp sin θ)2

+

[
rsp
2

(1 + rsp)
2 ∆ρ

ρ
+ rsp(1 + rsp)

2 ∆vs
vs

]
sin3 θ√

1− (rsp sin θ)2

+

(
rsp

∆ρ

ρ
+ 2rsp

∆vs
vs

)[
1− cos θ

√
1− (rsp sin θ)2

sin2 θ
− 1

2
(1 + r2

sp)

]
sin3 θ√

1− (rsp sin θ)2
.

(11)

Expanding to the 4th order in θ leads to the expressions

RPP =
1

2

(
∆ρ

ρ
+

∆vp
vp

)
+

(
−2 r2

sp

∆ρ

ρ
+

1

2

∆vp
vp
− 4 r2

sp

∆vs
vs

)
θ2 +

(
2

3
r2
sp

∆ρ

ρ
+

1

3

∆vp
vp

+
4

3
r2
sp

∆vs
vs

)
θ4 +O(θ6),

(12)

RPS =

[(
−1

2
− rsp

)
∆ρ

ρ
− 2 rsp

∆vs
vs

]
θ +

[(
1

12
+

2

3
rsp +

3

4
r2
sp

)
∆ρ

ρ
+

(
4

3
rsp + 2 r2

sp

)
∆vs
vs

]
θ3 +O(θ5). (13)

We have been careful to write these expressions in a bilinear form in terms of the small contrast (i.e.,
∆ρ/ρ,∆vp/vp,∆vs/vs) and the angle of incidence (i.e., sinn θ or θ). This will facilitate the SVD analysis of the
next section. Note that the coefficients of this bilinear transformation are only functions of the dimensionless param-
eter, rsp.

Before we continue our analysis, we take a closer look
at the plane wave (or eikonal) portion of the weak scatter-
ing (or Born) approximation. This is a quite non-trivial
assumption that puts an upper limit on the validity of the
θ, given by the condition that the dimensionless scale of

the perturbation

λ

T cos θ
≡ s� 1, (14)

where λ is the wavelength of the wave and T is the scale
of the gradient or the thickness of the layer. The problem
is that this can never be satisfied because there is no well
defined scale for the medium. The question now becomes:
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how does the expression for RPP and RPS (which we now
call

R ≡ (RPP ;RPS) (15)

collectively), given in the expansions of Eq. (12) and
Eq. (13), average as a function of dimensionless scale, s?
We now evoke well known theoretical physics concepts of
renormalization29, to recognize that we need to expand in
scale about the “ground state” harmonic oscillator. We
introduce three running coupling constants a0(s), a1(s),
and a2(s); and define the coefficients of the reflectivity,
ordered by θn as

A0(∆c) =
1

2

(
∆ρ

ρ
+

∆vp
vp

)
, (16)

A1(∆c) = −
(

1

2
+ rsp

)
∆ρ

ρ
− 2 rsp

∆vs
vs

, (17)

A2(∆c) = −2 r2
sp

∆ρ

ρ
+

1

2

∆vp
vp
− 4 r2

sp

∆vs
vs

, (18)

where the small contrasts ∆c ≡ (∆ρ/ρ,∆vp/vp,∆vs/vs)
are taken at the same reference scale, s. The reflectivity
at a scale, s, can now be written as

R = [a0A0 + a2A2θ
2; a1A1θ]. (19)

Another way of looking at this is a redefinition of in-
cidence angle, θ ≡ θ

√
a2/a0, and reflection coefficient,

R ≡ [RPP /a0;RPS/(a1

√
a0/a2)] so that

R = [A0 +A2θ
2
;A1θ]. (20)

The relationship between these expressions is just that
of dressed to undressed fields. In the case that there is a
well defined scale and θ is small enough, a0 = a1 = a2 =
1. Otherwise, one must calculate the running coupling
constants for the scale of interest using a characteristic
well log of the isotropic elastic properties and a forward
wave solution with a wavelet of scale, λ.

Recognizing that we will be truncating the expansion
at the second order in θ, we now develop a convenient ap-
proximation to the forward model of a spike convolution

R(θ; t) =
∑
k

R(θ; ∆ck) W (θ; t− tk), (21)

where W (θ; t) is a given angle dependent wavelet and the
summation is over the {k} contrasts or interfaces. The
problem with this expression is the θ dependance of the
wavelet. We would like to eliminate it, and replace it
by average wavelets. To this end, we now decompose
R(θ; ∆c) according to its θ dependance. Given the sim-
ple form of Eq. (12) and Eq. (13) it would have three
singular values λi and singular vectors ξi(θ). For a more
general expansion as given in Eq. (10) and Eq. (11), it
would have more singular values, λi ∼ O(θim), where θm
is the maximum angle of incidence. This structure will

be analyzed in more detail in the next section. For now
we just project R(θ; t) onto this basis

Ri(t) ≡
∫
ξi(θ) R(θ; t) dθ, (22)

and define

Wi(t) ≡
∫
ξi(θ) W (θ; t) dθ, (23)

∆Wi(θ; t) ≡W (θ; t)−Wi(t), (24)

Ri(∆c) ≡
∫
ξi(θ) R(θ; ∆c) dθ, (25)

∆Ri(θ; ∆c) ≡ R(θ; ∆c)−Ri(∆c). (26)

Remember that to second order

R(θ; ∆c) = [a0A0(∆c)+a2A2(∆c)θ2; a1A1(∆c)θ]+O(θ3).
(27)

Recognizing that∫
ξi(θ) ∆Wi(θ; t) dθ =

∫
ξi(θ) ∆Ri(θ; t) dθ = 0 (28)

and that ∆Wi and ∆Ri are of second order in θ2, we find
that

Ri(t) =
∑
k

∫
dθ ξi(θ) [Ri(∆ck) + ∆Ri(θ; ∆ck)]

[Wi(t− tk) + ∆Wi(θ; t− tk)]

(29)

=
∑
k

[
Ri(∆ck) Wi(t− tk)

+

∫
dθ ξi(θ) ∆Ri(θ; ∆ck) ∆Wi(θ; t− tk)

] (30)

=
∑
k

Ri(∆ck) Wi(t− tk) +O(θ4
m) (31)

This is an extremely convenient result. What it allows
us to do is calculate an effective wavelet, Wi(t), for each
weighted stack, Ri(t). We can then form a simple spike
convolution forward model using the singular vectors of
the reflectivity, Ri(∆c) for each stack. The order of
Ri(∆c) will be θim. We will therefore be able to use this
separation of R and W up to third order in Ri(∆c).

C. Singular value decomposition theory

We now move onto understanding the relationships be-
tween the basic rock physics parameters we wish to know,
ξ and ζ, and the geophysical measurements. We do this
by establishing a sequence of linear transformations, then
examining the important singular value decompositions
(SVDs) of that compound transformation. The singular
values will give an understanding of detectability of the
singular vectors (that is, the required SNR). The singular
vectors will tell us what views of the measurement to use
and how they are related to the rock physics.
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We start by writing the expression for the measured
reflectivity in following linear form

Rm = DMθ(MA(MRP∆r + εr) + εA) + εm, (32)

where Rm is the measured value of R, D is a linear dis-
tortion of the measurement of R, Mθ is the angle ma-
trix, MA is the geophysical reflection matrix, MRP is the
rock physics matrix, ∆r is the change in the rock physics
parameters, εr is the error vector in the rock physics
relationships, εA is the error vector in the geophysical
forward model, and εm is the error vector in the mea-
surement of R. Now expand this expression,

Rm = DMθMAMRP∆r +D(MθMAεr +MθεA) + εm
(33)

= R0 + εc (34)

using the definition of the most likely reflection coeffi-
cients

R0 ≡ DMθMAMRP∆r (35)

and the combined error in the estimate of the reflection
coefficients

εc ≡ D(MθMAεr +MθεA) + εm. (36)

Assume that the expected values of the fundamental er-
rors of εr, εA, and εm are 0; the covariances are given
by Σr, ΣA, and Σm respectively; and that εr, εA, and
εm are independent and normally distributed. It follows
that expected value εc is 0, and the covariance is given
by

Σc = Σm+(DMθ)ΣA(DMθ)
T+(DMθMA)Σr(DMθMA)T

(37)
In other words, the measurement of the reflection coeffi-
cients is distributed according to a multivariant normal
distribution, MVN(R0,Σc), with a probability density
given by

P (Rm) ∼ exp

{
−1

2
(Rm −R0)TΣ−1

c (Rm −R0)

}
(38)

Before we continue with understanding the linear structure of this distribution we need to examine the structure
of the expression for R0 given in Eq. (35), and the rock physics covariance matrix, Σr. First of all the expression for
R0 contains the product of matrices where

∆r ≡
(
dζ
dξ

)
, ∆c ≡


∆ρ
ρ

∆vp
vp

∆vs
vs

 , A ≡


A0

A1

A2

...

 , R =



RPP (θ = 0)
...

RPP (θm)
RPS(θ = 0)

...
RPS(θm)


, (39)

R = Mθ A, A = MA ∆c, ∆c = MRP ∆r, and MRP =


Bρ Bvp

ρ
Cvp+Cρ

ρ
Bvp
vp

Cvp
vp(

Bvs
rsp

)
Bvp
vp

(
Bvs
rsp

)
Cvp
vp

 . (40)

As we have noted in the last section, all of the important physics is contained in the renormalized, 2nd order in θm,
(3 term) expressions. For this case,

Mθ =



1 0 0
1 0 (∆θ)2

1 0 (2∆θ)2

...
...

...
1 0 [(N − 2)∆θ]2

1 0 θ2
m

0 0 0
0 ∆θ 0
0 2∆θ 0
...

...
...

0 (N − 2)∆θ 0
0 θm 0



, MA =

 1
2

1
2 0

− 1
2 − rsp 0 −2rsp
−2r2

sp
1
2 −4r2

sp

 , (41)
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where ∆θ ≡ θm/(N − 1). It can be extended to 4th order (5 term) in θm to give

Mθ =



1 0 0 0 0
1 0 (∆θ)2 0 (∆θ)4

1 0 (2∆θ)2 0 (2∆θ)4

...
...

...
...

...
1 0 [(N − 2)∆θ]2 0 [(N − 2)∆θ]4

1 0 θ2
m 0 θ4

m

0 0 0 0 0
0 ∆θ 0 (∆θ)3 0
0 2∆θ 0 (2∆θ)3 0
...

...
...

...
...

0 (N − 2)∆θ 0 [(N − 2)∆θ]3 0
0 θm 0 θ3

m 0



,MA =


1
2

1
2 0

− 1
2 − rsp 0 −2rsp
−2r2

sp
1
2 −4r2

sp
1
12 + 2

3rsp + 3
4r

2
sp 0 4

3rsp + 2r2
sp

2
3r

2
sp

1
3

4
3r

2
sp

 .

(42)
We can also give a large θm version extended to 5th order (6 term) in sin θm

MT
θ =



1 0

0 sin θ√
1−(rsp sin θ)2

sin2 θ 0

0 sin3 θ√
1−(rsp sin θ)2

sin4 θ
cos2 θ 0

0

[
1−cos θ

√
1−(rsp sin θ)2

sin2 θ
− 1

2 (1 + r2
sp)

]
sin3 θ√

1−(rsp sin θ)2


,MA =



1
2

1
2 0

− 1
2 − rsp 0 −2rsp
−2r2

sp
1
2 −4r2

sp
rsp
2 (1 + rsp)

2 0 rsp(1 + rsp)
2

0 1
2 0

rsp 0 2rsp


.

(43)
Each block of the MT

θ matrix is an 1×N matrix with an element for each discrete θ between 0 and θm.
We do note the degeneracy in the MA matrix for rsp = 0 and 1/2. This only reduces the rank of MA to 2 at

rsp = 1/2. Since ∆r is only of dimension 2, there is no loss of sensitivity of R to ∆r.
Using Eqs. (1), (3) and (5), the form of the rock physics covariance can be shown to be

Σr
2

=


σ2
ρ+B2

ρσ
2
vp

ρ2
Bρ
ρvρ

σ2
vp

BρBvs
ρvs

σ2
vp

Bρ
ρvp

σ2
vp

σ2
vp

v2p

Bvs
vpvs

σ2
vp

BρBvs
ρvs

σ2
vp

Bvs
vpvs

σ2
vp

σ2
vs+B

2
vsσ

2
vp

v2s

 . (44)

With these definitions now in hand, we return to the
form of the distribution for Rm given in Eq. (38). Since
Σc is positive definite, it can be written as

Σ−1
c = WT

d Wd (45)

We make two singular value decompositions (SVDs) such
that

WdDMθ = U1Σ1V
T
1 (46)

and

Σ1V
T
1 MAMRP = U2Σ2V

T
2 . (47)

We define Σ1 and Σ2 as the square diagnal matrices
formed by dropping the zero rows of Σ1 and Σ2, re-
spectively. We also define U1 and U2 by dropping the
corresponding columns of U1 and U2, respectively.

First of all, write the distribution as

P (Rm) ∼ exp

{
−1

2
(WdRm −WdR0)T (WdRm −WdR0)

}
(48)

∼ exp

{
−1

2
χTχ

}
(49)

where

χ ≡WdRm −WdDMθMAMRP∆r. (50)

Now make the change of coordinates such that

χ∗ ≡ UT2 U
T

1 χ. (51)

Using these definitions, it can be shown that

χTχ = (χ∗)Tχ∗ +H (52)
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where H is not a function of ∆r (thus, it does not affect
the likelihood function of ∆r) and

χ∗ = U
T

2 (U
T

1 Wd)Rm − Σ2V
T
2 ∆r (53)

= (Σ2V
T
2 )[∆r0 −∆r], (54)

where we define

∆r0 ≡ (Σ2V
T
2 )−1U

T

2 (U
T

1 Wd)Rm (55)

and let

Σ−1
∆r ≡ (Σ2V

T
2 )T (Σ2V

T
2 ). (56)

Given that Rm is the observed forward modeled reflec-
tion response of rock properties r1 over r0, such that
∆r0 = r1 − r0 and ∆r = r − r0, the probability of r
can be written as the multivariate normal distribution,
MVN(∆r0,Σ∆r), with a probability of r given by

P (r) ∼ exp

{
−1

2
(r − r1)Σ−1

∆r(r − r1)

}
. (57)

Let us now make some practical identifications. First,

recognize that U
T

1 Wd transforms Rm into m “stacks”
where m is the dimension of A matrix (either 3, 5 or 6,
for Eq. (41), (42) or (43), respectively). We will denote
these stacks as Ri so

R̃ ≡


R0

R1

...

Rm−1

 , and Σ1 =


λ0 0 0 0

0 λ1 0 0

0 0
. . . 0

0 0 0 λm−1

 . (58)

The signal-to-noise level (SNR) of the stack, Ri, is de-
fined as 20 log10 λi and λi ∼ θim. V T2 is a 2 × 2 matrix
that rotates ∆r so that they are orthogonal, ∆r̃ = V T2 ∆r.

Then the m stacks R̃ are projected by U
T

2 (a 2 × m
matrix) onto the two orthogonal rock physics directions.
The two singular values given by the diagonal matrix Σ2

give the uncertainty of the estimates of the rock physics
parameters along the two orthogonal directions in the
rock physics space, ∆r̃, defined by V T2 . One can directly
form the two optimal stacks for estimation of the two or-

thogonal rock physics parameters, ζ̃ and ξ̃, by U
T

2 U
T

1 Wd.
Many of the current inversion schemes invert for vari-

ous moduli and other elastic parameters such as densities
and Poisson ratios. There have been historical debates
on which of these combinations are best to estimate the
fundamental rock physics parameters that continue to
this day. It is our view that this is an irrelevant debate.
The relevant question is what are the orthogonal stacks
of the data covariance matrix with positive SNR and how
are they related to the orthogonal coordinates of the rock
physics. Not withstanding this point, there is something
to be learned from examining the linear mapping of the
rock physics to contrasts in these traditional variables
and the SVD of that transformation.

We start this analysis with the definition of a reason-
ably representative set of traditional parameters which
consists of the shear modulus,

G ≡ ρ v2
s ,

the bulk modulus,

K ≡ ρ v2
p −

4

3
G,

the Youngs modulus,

E ≡ 9KG

3K +G
,

the Poisson ratio,

ν ≡ 3K − 2G

2(3K +G)
,

the vp to vs ratio,

rps ≡ vp/vs,

and the density, ρ. We linearize the relationship between
these variable and ∆c so that

∆rT = MT∆c, (59)

where

∆rT ≡



∆K
K

∆G
G

∆E
E

∆rps
rps

r2
ps ∆ν
∆ρ
ρ


, and (60)

MT =



1 − 6
4r2sp−3

8r2sp
4r2sp−3

1 0 2

1 − 2(2r2sp−3)(2r2sp−1)
(rsp−1)(rsp+1)(4r2sp−3)

2(8r4sp−15r2sp+6)
(rsp−1)(rsp+1)(4r2sp−3)

0 1 −1

0 1
(rsp−1)2(rsp+1)2 − 1

(rsp−1)2(rsp+1)2

1 0 0


.

(61)

This linear relationship is singular for rsp = 1 and
√

3/4.
It is constructed to have a well defined limit at rsp = 0
of

MT =



1 2 0

1 0 2

1 −2 4

0 −1 1

0 −1 1

1 0 0


, (62)
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which shows that the moduli (bulk, shear, and Youngs)
are mixtures of the density and the velocities, the Poisson
ratio and the vp to vs ratio are both similar quantities
showing correlation in vp to vs, and the density is mod-
estly perpendicular to the moduli. These facts will be
useful in understanding the results to be shown in Fig. 9
in Sec. III A.

Using the Eq. (59) and Eq. (40), we write

∆rT = MTMRP∆r. (63)

Now make the SVD, so that MTMRP = UTΣTV
T
T . The

VT = V2 that we found before, so that we write

U
T

T∆rT = ΣTV
T
2 ∆r = ΣT∆r̃. (64)

The interesting part of this SVD is U
T

T which is a 2 × 6
matrix which projects the traditional rock physics con-
trasts onto two orthogonal rock physics directions.

III. APPLICATIONS

A. Singular value decomposition analysis

This is still abstract at this point. Let us substitute
in the rock physics of the shales given in the latter part
of Sec. II A. For now we set the multiplicative distor-
tion, D, to the identity matrix and the data covariance,
Σm, to a diagonal constant of 1. We shall return to this
later in this section. Also set the rock physics covari-
ance, Σr, to zero along with the covariance of the for-
ward model, ΣA. We shall return to the implications of
rock physics uncertainty on the detectability of ductile
fraction in Sec. III C. The matrix Wd will therefore be
the identity matrix. We set the rock physics composition
to ζ = 0.79 and the geometry to ξ = 0.5. This gives
a density of ρ = 2.59 gm/cc, compressional velocity of
vp = 14000 ft/s, a shear velocity of vs = 8000 ft/s, a vp
to vs ratio of rps = 1.75, a Poisson ratio of ν = 0.26, and
a porosity of φ = 16%.

For a small maximum angle of θm = 0.5◦, we get the

stack weights, U
T

1 , shown in Fig. 2. We have shown the
results for the 6 term A vector, but the other two are just
truncated versions of this result. It should be noted that
this result is independent of the rock physics, MRP , and
the relationship between the rock physics and the A’s,
MA. In the order of decreasing singular value, or SNR,
we have R0 the full PP stack, R1 the “full” PS stack (in
quotes because it is really linearly weighted with θ), then
R2 the AVO PP gradient stack (weighted by θ2 so that it
is the far offsets minus the near offsets). The series con-
tinues on with progressively higher θ order weightings of
the stacks in an alternating order between the PP and
the PS data. The next figure (Fig. 3), shows the depen-
dance of the singular values on θm. Note that they scale
as λi ∼ θim as expected. Continuing with the analysis, we
show the rotation of ∆r onto an orthogonal system ∆r̃

FIG. 2. Stack weights, U
T
1 , as a function of incidence angle,

θ. First set is for PP data, followed by the weights for PS
data.

FIG. 3. Singular values, λi, as a function of θm.

in Fig. 4. Note that ζ̃ is mainly the composition variable
ζ and the ξ̃ variable is mainly the geometry variable ξ.

Figure 5 shows the U
T

2 transformation of the stacks, R̃,
onto the rock physics variables, ∆r̃. Note that the full
PP stack is the main contribution to the determination
of the composition variable, ζ̃, and the “full” PS stack
is the main contribution to the determination of the ge-
ometry variable, ξ̃. The AVO PP gradient stack is of
minor contribution to either, but it is more aligned with
ξ̃ and orthogonal to ζ̃. The 4th order PP, R4, is totally
negligible.

We now increase the maximum angle of incidence to
a typical value of θm = 30◦. The main change is shown

in Fig. 6 which shows the U
T

2 transformation. Although

the alignment of the ζ̃ and the ξ̃ directions stay in the
same general directions, they are starting to rotate in the
R0-R1 plane (full PP and “full” PS) so they are becoming
a bit of an admixture of both. Note that the AVO PP
stack, R2, and the 4th order PP stack, R4, still have
negligible contribution to both. The reason for this can
be seen in the Σ1 singular values of the R̃ stacks. The
second singular value, λ1 (of the “full” PS stack) is 10
dB less than the first singular value λ0 (of the full PP
stack). The singular value of the AVO PP gradient stack,
λ2, is an additional 12 dB less that that of the “full” PS
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FIG. 4. Orthogonal rock physics parameters, ∆r̃, as given
by V T

2 .

FIG. 5. Transformation of the stacks onto the rock physics

parameters, U
T
2 , for θm = 0.5◦.

stack, so that it is 22 dB less than that of the full PP
stack. It should be noted that the singular value of the
4th order PP stack, λ4, is 43 dB less than that of the
full PP stack. Since the expected SNR of most seismic
data is 10 dB to 20 dB, one can reasonably expect to
reliably estimate the full PP and the “full” PS stack. It

FIG. 6. Transformation of the stacks onto the rock physics

parameters, U
T
2 , for θm = 30◦.

is rather tenuous whether the AVO PP gradient stack
can be estimated. There is little probability that the 3-
term AVO, as determined by 4th order PP stack, can be
estimated reliably.

Finally, we increase the maximum angle to θ = 60◦.
This is representative of very long offset AVO data. The

main change is shown in Fig. 7, which shows the U
T

2

transformation. It shows the same modest rotation in
the ζ̃ and ξ̃ directions as the previous case. The main
difference is that the AVO PP gradient stack contributes
almost equally with the “full” PS stack to the determina-
tion of ξ̃. The reason for this can be seen in the singular
values of Σ1. The singular value of the “full” PS, AVO
PP gradient stack, and the 4th order PP stack are 3 dB, 6
dB, and 20 dB less than the full PP stack, respectively. It
is interesting to examine the compound transformation,

U
T

2 U
T

1 , that defines the two optimal stacks for estimation
of the two rock physics parameters, ∆r̃. They are shown
in Fig. 8. The optimal stack weights for the composition,
ζ̃, are a difference between the full PP and the “full” PS
stack. The optimal stack weights for the more important
property, the geometry, ξ̃, has roughly equal weights for
the “full” PS stack, and the far offset PP data.

As we developed earlier, in the theoretical part of the
previous section, there is value in examining the rela-
tionship between the rock physics and more traditional

elastic parameters, U
T

T . For the rock physics character-
istic of the Marcellus shale, the results are shown in Fig.
9. All of the moduli, whether the bulk, shear, or Youngs
molulus (i.e., R,G, orE) have roughly equivalent ability

to descern the composition, ζ̃. For the geometry, ξ̃, how-
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FIG. 7. Transformation of the stacks onto the rock physics

parameters, U
T
2 , for θm = 60◦.

FIG. 8. Optimal stack weights, U
T
2 U

T
1 , as a function of

incidence angle, θ, for the determination of rock physics pa-
rameters. First set is for PP data, followed by the weights for
PS data.

ever, it is clearly the density, ρ, which is the whole story.
One will need to estimate one of the moduli before the
secondary variation (secondary singular value) associated
with the density can be understood, though. We are not
advocating inverting for the density. First of all, it is
an absolute property, not a relative property like ∆ρ/ρ.
There are grave technical concerns in inverting for such
absolute quantities because of the need to incorporate ab-
solute reference values. They are never truly known, and
incorporation of them in the results will bias the results.
Second, it is an un-necessary complication to invert for
a meta parameter, and it complicates the incorporation
of prior information. Instead, one should invert directly
for ξ from a limited number of stacks of R̃, where the
data covariance is diagonal and largest. This analysis

FIG. 9. Relationship between traditional rock physics pa-
rameters and the fundamental rock physics parameters given

by U
T
T .

does confirm, though, some of the folklore that believes
it is density that matters in predicting the performance
of unconventional reservoir fracturing.

We now turn our attention to how noise and system-
atic data distortions will modify what the optimal stack
weights will be. In practice, these weights are deter-
mined by a principal components analysis of the seis-
mic data. The renormalization constants, ai(s), the av-
eraged wavelets, Wi(t), as well as the data covariance
matrix, Σm, are also determined by the wavelet deriva-
tion process22 at a well location. All of these parameters
are estimated by a minimization of synthetic seismic mis-
match with an additional estimate of the uncertainty in
this minimalization. What we wish to show by this study
are reasons for the deviation of the optimal stack weights
from the theoretical ones shown earlier in this section.

We start by showing the effect of having more noise on
both the near and far offsets. The nominal SNR is chosen
to be 25 dB. For simplicity, we have used the three term
expression for Mθ and MA given in Eq. (41). A diagonal
form of Wd is chosen with the diagonal elements shown

in Fig. 10a. The effect on the stack weights, U
T

1 Wd,
are shown in Fig. 10b. They display a common taper
that is traditionally applied to weighted stacks at small
and large offsets. This analysis gives a possible physical
origin for such a taper. Such tapers are also found by the
principal components analysis discussed in the previous
paragraph and the analysis to be shown in Sec. III B.
The singular values of the stacks, Σ1, are 23 dB, 12 dB,
and -2 dB for the the full PP, “full” PS, and the AVO
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FIG. 10. Effect of angle dependent noise on stack weights.
(a) more noise is assumed on the near and far offsets as shown
by the SNR, Wd, as a function of angle. (b) Stack weights,

U
T
1Wd, as a function of incident angle, θ, for the PP and PS

data.

PP gradient stacks, respectively.

We now simulate another common data non-ideality –
“hot nears”, an offset dependent distortion, diagonal D,
such that the near offset traces are artificially enhanced
(see Fig. 11a). If the SNR after this distortion is a con-

stant 25 dB, the stack weights, U
T

1 Wd, are shown in Fig.
11b. The effect is counter intuitive. Since the far offsets
have been multiplied by a smaller number, one might
expect them to have a larger weight in the stack to com-
pensate. Instead, they have a smaller weight. This is
because they have a decreased amount of signal with the
same noise. Hence, the effective SNR is less and hence
the weight is less. The SNR for the three stacks are 25
dB, 9 dB, and -3 dB, respectively.

Next we assume the same “hot nears” of the previ-
ous case, but now we assume that the offset dependent
scalar is applied after the noise so that the noise level is
decreased along with signal. We limit the SNR to 40 dB.
The same offset dependent weights shown in Fig. 11a
are used. The SNR is modified from a constant 25 dB
to that shown in Fig. 12a. The stack weights U

T

1 Wd

for this case are shown in Fig. 12b. This result is much
more intuitive. The larger offsets are weighted more to
compensate for the smaller multiplicative constant. This
results in the SNR of the second and third stacks to be
increased. The resulting SNRs are 24 dB, 13 dB and 1
dB, respectively.

FIG. 11. Effect of angle dependent distortion on stack
weights, with a constant SNR. (a) “hot nears” such that the
near offset traces are artificially enhanced is shown by the
offset dependent distortion, Dii, as a function of angle. (b)

Stack weights, U
T
1Wd, as a function of incident angle, θ for

the PP and PS data.

B. Principal component analysis of stack weights of real
data

The results of Sec. III A demonstrated what the theo-
retical stack weights should be and how angle dependent
noise and angle dependent distortions would affect those
weights. Practically, this can be determined from the
data. For some real data characteristic of a typical un-
conventional shale petroleum reservoir, such an analysis
was done on PP data.

A standard principle components analysis was done on
the covariance matrix constructed from 12 separate sam-
ples of an angle gather. Each sample has a basis of 40
angles (0 to 40 degrees). The covariance matrix is 40×40
and it characterizes at the variance structure of the am-
plitudes for the 40 angles estimated from our 12 samples.
The eigenvalues and eigenvectors of the covariance ma-
trix are calculated numerically for this square symmetric
matrix. The eigenvalues, or principle components, are
proportional to the variance of data associated with the
respective eigenvectors.

The results of this analysis are shown in Fig. 13. The
first eigenvector (labeled as R0 in Fig. 13b) is smaller
than expected for small angles (it should be a constant).
As we have shown in the previous section, this could be
because the data has more noise at small angles or be-
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FIG. 12. Effect of angle dependent distortion on stack
weights, which is applied after the noise. Angle dependent
distortion is the same as that in Fig. 11. (a) SNR as a func-

tion of angle. (b) Stack weights, U
T
1Wd, as a function of

incident angle, θ for the PP and PS data.

cause of “hot nears” as displayed in Figs. 10 and 12,
respectively. We do not know which of these two is the
true cause, but we do not need to know. We just need
to form the stacks with these derived weights and pro-
ceed with the wavelet derivation process and the rest of
the analysis. The second eigenvector, R2, shows rough
characteristics of an AVO PP gradient stack, which is
far offsets minus the near offsets. It does show a large
amount of oscillations that have the properties of noise.
This demonstrates that the signal is roughly the same
size as the noise. The third eigenvector, R4, looks like
only noise. This is highlighted in Fig. 13a, which shows
the eigenvalues in reference the the noise level implied by
these eigenvectors.

The analysis was continued and a Bayesian wavelet
derivation22 was done using a method that estimated the
noise using the well log. The results showed a good match
of the synthetic to the seismic and a reasonable wavelet.
More importantly, when the noise level was compared to
the size of the dominate reflections, we determined that
the SNR was about 20 dB. This compares to the 28 dB
estimated from the principle components analysis.

FIG. 13. Results of principal components analysis on real
data. (a) eigenvalues displayed in power. Shown as the dot-
ted line is the noise level as estimated from the form of the
eigenvectors. (b) three leading eigenvectors.

C. Detectability including rock physics uncertainty

We now turn our attention to the practical detectabil-
ity of the rock properties. To do this, we extend the anal-
ysis of Sec. III A to include the uncertainty in the rock
physics, εr. We use the expression for the 5 term A vector
given in Eq. (42), a maximum angle of θm = 60◦, a data
error of 1% in reflection coefficient (RFC) units, and base
values for the rock physics of r1 = (ζ1, ξ1) = (0.79, 0.65)
characteristic of the Marcellus shale to be discussed in
the upcoming Sec. III D. The full probability for P (r) of
Eq. (57) is shown in Fig. 14. The untruncated width

in the ζ̃ direction is 0.06 and is 0.35 in the ξ̃ direction.
The rotation of the ellipsoid is 23◦. The dimensions of
the ellipsoid is dominated by the rock physics uncertainty
for a data error of 1% RFC. The data error becomes as
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FIG. 14. Probability of r, P (ζ, ξ), as a function of ζ and ξ.
The value of r1 that is forward modeled is shown as the black
dot. The principle directions of the distribution are shown as
the black arrows.

important as the rock physics uncertainty in determining
the dimensions of the ellipsoids, if it is increased to 3%
RFC.

The contribution of each of the terms in the expres-
sion for the reflectivity to the determination of ζ̃ and ξ̃

is shown in Fig. 15 by the matrix U
T

2 V
T
1 . The value of

ζ̃ is dominated by R0(PP ) with some contribution from

R1(PS). The value of the important ξ̃ is dominated by
R1(PS) and R3(PS). This is further clarified by exam-
ining the marginal and conditional probabilities for ζ in
Fig. 16 and for ξ in Fig. 17. The data that is used
(i.e., PP, PP+AVO, PP+PS, or all data) is controlled
by manipulation of the data covariance, Σm (setting the
error to a large value for the data to be excluded). For
use of the PP data only, an angle up to θm = 6◦ is used
for the PP data. The marginal probability for ζ is well
determined with a standard deviation of about 0.11 for
all data sets, but a bias of −0.15 is removed by including
the PS data (the standard deviation is also modestly re-
duced from 0.13 to 0.11). The conditional probability is
well determined for all data sets with a standard devia-
tion of 0.06. The marginal probability for ξ is determined
with a standard deviation of 0.23, only with the addition
of PS data. The conditional probability is well deter-
mined for all data types with a modest decrease in the
standard deviation from 0.14 to 0.12 with the addition
of PS data.

The optimal stack weights for estimation of ζ̃ and ξ̃,

U
T

2 U
T

1 Wd, are very similar tho those shown in Fig. 8.

The first set of weights, that estimate ζ̃, are roughly a
full PP plus a “full” PS stack. The second set of weights,
that estimate ξ̃, are a combination of the far offset PS
and far offset PP data.

FIG. 15. Contribution of each of the stacks to the determi-
nation of the principle directions of P (ζ, ξ). Display of the

elements of the matrix U
T
2 V

T
1 .

The detectability of the second principle direction, ξ̃, is
reduced as the maximum angle is decreased to 45◦, with
very little discrimination remaining for maximum offset
angles less than 30◦. The implication is that one can not
simultaneously determine ζ and ξ, when the incident an-
gle is under 30◦. In order to determine ξ for small maxi-
mum offset angle, the value of ζ must be well constrained.
The value of the PS data, in this case, is reduced because
the second principle direction is not needed. However,
the value of PS data can be preserved in a multiple layer
inversion, at more modest maximum offset angles, as will
be demonstrated in Sec. III E.

D. Marcellus prototype model

In order to test the practicality of determining the duc-
tile fraction, fd = fdc ξ, and other quantities of interest
for an unconventional shale petroleum reservoir, a proto-
type model of the Marcellus play is constructed. A typi-
cal stratigraphic cross section is shown in Fig. 18. Note
that the lower Marcellus shale is the primary interval of
interest. Typical values of ρ, vp, and vs are shown in Fig.
19. Reference lines of the trends in Eq. (1) and (3) are
displayed versus these typical values. The ρ and vp val-
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FIG. 16. (a) marginal and (b) conditional probabilities of ζ
derived from P (ζ, ξ). The true values of ζ1 = 0.65 are shown
as black lines. The distribution using the PP data is shown
as the magenta line, the PP+AVO data as the yellow line, the
PP+PS data as the green line, and all the data as the blue
line.

ues are transformed using Eq. (1) and (5) to give typical
ζ and ξ for each layer with the results shown in Fig. 20.
Note that the limestones have ξ ≈ 0, and the marls have
ξ ≈ 0.2. There are two types of shales. One type has
ξ ≈ 0.5 and the other type, the high TOC “frackable”
target shales, has ξ ≈ 0.7. The resulting models for ζ
and ξ (where ξ indicates lithology, and ζ indicates com-
paction, diagenesis, or mineral substitution) are shown in
Fig. 21. This is consistent with our earlier identification
of ζ with composition, and ξ with geometry. Three sim-
plified models, two with two layers, and one with three
layers, are shown in Fig. 22. They are contructed to
build up to the full model in Fig. 21 in a systematic way.
We first will understand what can be learned from the
reflection coefficient from the bottom and the top of the
target layers in Fig. 22a and Fig. 22b. The third model
(Fig. 22c) adds the additional information of layer times
and the accompanying tuning effects. This is a closer ex-
amination of the bottom three layers of the model shown
in Fig. 18.

The work of Kohli and Zoback 2 and Portis et al. 3 has
shown a strong connection between the ductile fraction
and the efficiency of hydraulic fracturing. For this reason,
the main focus will be determining the ductile fraction

FIG. 17. (a) marginal and (b) conditional probabilities of ξ
derived from P (ζ, ξ). The true values of ξ1 = 0.79 are shown
as black lines. The distribution using the PP data is shown
as the magenta line, the PP+AVO data as the yellow line, the
PP+PS data as the green line, and all the data as the blue
line.

from the converted wave (i.e., cwave or joint PP and PS)
surface imaging of the models of Figs. 18 and 22.

It is helpful to understand the geology behind this
stratigraphy30. The Marcellus shale and its accompany-
ing stratigraphy was formed in the Devonian time during
the tectonic plate collision that formed the Appalachian
mountains. The deposition was more specifically asso-
ciated with the foreland basin caused by the isostatic
compensation of the thick crust associated with the col-
lision and uplift. When there was a reduction in the sub-
duction, the sedimentation into the foreland basin was
reduced and the basin became shallow enough to be fa-
vorable to carbonate formation. The result was the lime-
stones in the stratigraphic section. When the orogeny
recommenced the basin deepened, but there was a delay
in the resumption of the erosion of the mountains and
an increase of the sediment load into the foreland basin.
This created a good environment for the formation of
shales high in organic content. As time progressed, the
sediment load resumed, increasing the silt in the shale,
lowering its organic content and ductile fraction. This
sequence is repeated twice in a significant way in this
section, and once in a more minor cycle (see the orogeny
curve in Fig. 18).
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FIG. 18. Typical stratigraphic cross section of Marcellus
shale play.

FIG. 19. Typical values of ρ, vp, and vs for the Marcellus
shale play. Values are normalized according to the equation
x̄ = (x − xmin)/(xmax − xmin), where min vp = 8000 ft/s,
max vp = 18000 ft/s, min vs = 3800 ft/s, max vs = 11000
ft/s, min ρ = 2.1 gm/cc, max ρ = 2.8 gm/cc. (a) vs-vp values
in normalized units. Purple line is the fit trend, Eq. (3). (b)
ρ-vp values in normalized units. Trend lines of constant ξ, Eq.
(1), are colored and labeled according to the value of ξ.

FIG. 20. Typical values of ζ and ξ for the Marcellus shale
play.

FIG. 21. Stratigraphic cross sections with typical values of ζ
(i.e., lithology) and ξ (i.e., compaction, diagenesis, or mineral
substitution) for the Marcellus shale play.

FIG. 22. Three simplified models of the Marcellus shale
play: (a) high TOC shale on top of a limestone, (b) low TOC
shale on top of a high TOC shale, (c) a three layer model of
a high TOC shale between a limestone and a low TOC shale.
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FIG. 23. Probability distribution of ξ in the overlying shale
layer of the two layer model shown in Fig. 22a. The value of
ξ1 forward modeled is shown as the black vertical line. The
value of ξ1 forward modeled is shown as the black vertical
line. The distribution before the use of any seismic data is
shown as the black line, after using the PP data is shown as
the red line, after using the PP+AVO data as the green line,
after using the PP+PS data as the blue line, and after using
all the data as the cyan line.

E. Model based inversion

It seems difficult to determine the ductile fraction us-
ing data with modest maximum angles of incidence, θm,
for simple two layer models as discussed in Sec. III C, and
angle dependent wavelet effects with the associated angle
dependent tuning. The complex model described in the
previous Sec. III D, gives an opportunity to still be suc-
cessful. There are advantages introduced by the extra
data associated with the multiple reflectors (times and
reflection strengths), multiple stacks, differential tuning
of the different stack bandwidths, and rich prior model
assumptions both on the rock physics and structure. In
order to take advantage of this, a Bayesian model-based
inversion23,24 is done.

To test these ideas, a realistic synthetic seismic forward
model of the two layer model of Fig. 22a, and the ten
layer model of Fig. 21 is made. The ductile fraction rock
physics model of Eq. (1), Eq. (3) and Eq. (5) is used.
Uncertainties are assumed to be 25 m on the thicknesses,
3 ms on PP times for the bright reflectors, and 8 ms
on PP times for the dim reflectors. No uncertainty in ζ
is used although the results are relatively unchanged for
uncertainty in ζ less than 0.15. The uncertainty in the ξ
value is set to 0.20 except for the limestone layers, which
are assumed to have no uncertainty in ξ. The noise on the
data stacks is assumed to be 1% RFC with a maximum
offset angle of θm = 45◦.

The results for the two layer model are shown in Fig.
23 which displays the probability distribution of ξ, P (ξ),
for the overlying shale layer. Note the significant update

FIG. 24. Probability distribution of ξ in the (a) Geneseo
shale and (b) lower Marcellus shale of the ten layer model
shown in Fig. 21. The value of ξ1 forward modeled is shown
as the black vertical line. The distribution before the use of
any seismic data is shown as the black line, after using the
PP data is shown as the red line, after using the PP+AVO
data as the green line, after using the PP+PS data as the
blue line, and after using all the data as the cyan line.

to the distribution for each seismic data type used and
the very modest improvement with the addition of PS
data. Both are consistent with the theoretical result of
Fig. 17b. Things become more interesting with the addi-
tional complexity and information of the ten layer model.
Figure 24 shows the estimated probability of ductile frac-
tion, P (ξ), in the Geneseo shale and the lower Marcellus
shale. They represent two situations, one having priors
consistent with data (Fig. 24a) and the other having
biased priors (Fig. 24b). For the Geneseo layer, with-
out using PS data, the estimated distributions (red and
green curves) are bimodal. However, the inclusion of PS
data (blue and cyan curves) significantly improves the
estimate of ductile fraction, and the unique modes of the
posterior distributions correspond to the true value. For
the lower Marcellus layer, where the prior is biased to a
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high value (i.e., ξ = 1.0), the use of seismic data gen-
erally shifts the distributions towards to the true value,
and the inclusion of PS data shifts them much more.

IV. CONCLUSIONS

The purpose of this paper has been to establish the un-
derlying fundamentals of quantitative interpretation for
unconventional shale reservoirs. This starts with the un-
derstanding that it is the ductile fraction that controls
the geomechancial balance between the rocky road joint
friction of the fractures and the viscous joint friction.
While this geomechanics is not the subject of this paper,
others1,2 have found sensitive dependance of the dynamic
friction on the ductile fraction, and a resulting dramatic
change in the fracturing efficiency3.

Inspired by this geomechanical observation, we de-
veloped and verified, at the mesoscopic level, a rock
physics model where the three isotropic elastic proper-
ties are only a function of two parameters, the scaled
ductile fraction, ξ = fd/fdc, and a composition variable,
ζ = 1−exp (−E/E0), which captures compaction, diage-
nesis, and mineral substitution effects. The first variable
captures changes in the geometric microstructure, that
is how efficient the rock matrix is in supporting stress –
modulus per mass or coordination number. The second
variable captures the compositional properties of the ma-
trix. It is a remarkble gift of nature that there are only
two parameters and that one of them is directly related
to the ductile fraction – the critical parameter for the
geomechanics.

The next important question that we answered is how
this geometry parameter, ξ, manifests itself in surface re-
flection seismic. The equations relating the rock physics
to the reflectivity were all linearized and an SVD analysis
was done to answer this question. The leading order sin-
gular value was primarily related to the full PP stack and
the composition, ζ. The next order singular value was
primarily related to the “full” PS stack and the geome-
try variable, ξ = fd/fdc. For reasonable angles of reflec-
tion, the higher order stacks, which include the AVO PP
gradient stack, all have small SNRs which would make
them hard, if not impossible, to detect. If the angles of
incidence could be extended to 60◦ or more, the AVO
PP gradient stack could be substituted for the “full” PS
stack because its singular value becomes roughly equal.
We wish to emphasize that this is not a three term AVO
analysis for a determination of ρ, vp and vs. It is only
a two term analysis for the two rock physics parameters.
Because the rock physics only has two parameters, using
three stacks creates an over determined system. While
using the three stacks would improve the estimates of
those two parameters, the third stack is not necessary.

A further analysis was done to relate the two funda-
mental rock physics parameters to traditional elastic pa-
rameters. It was found that the composition, ζ, is related
to the moduli (bulk, shear or Youngs), and the geometry,

ξ = fd/fdc, is related to the density. This is consistent
with common wisdom of the density being needed to pre-
dict frackability.

There are two other practical findings of this analy-
sis. The first is that effective wavelets (for each stack)
can be used for the first three stacks (i.e., full PP, “full”
PS, and AVO PP gradient). This is because corrections
to these wavelets would be of higher order (fourth order
in θm, compared to the second order accuracy of the re-
flectivity calculation). Second, the effect of scale can be
captured in renormalization constants that are absorbed
into the wavelet normalizations and the effective angle
of incidence. These practical findings enable a wavelet
derivation process which finds a separate wavelet for each
stack and a constant which relates the effective angle of
incidence to the true angle of incidence.

The effect of noise that is a function of the angle of in-
cidence, and distortions to the data that are functions of
angle of incidence, were shown to be corrected by mod-
ification of the stack weights. These weights are conve-
niently derived from real data by a principle component
analysis on the real data. The result is the taper at small
and large offsets, and an offset dependent scalar being
applied to the data. This analysis gives theoretical jus-
tification to common practices that have been done for
more practical reasons.

The final portion of this work focused on the practical
application of the theory to both synthetic and some-
times to real data. First, the result of determining the
stack weights via a principal components analysis on real
data was shown. The results support the analytic work
and the conclusions of that work. The preliminary SVD
analysis was then extended to include rock physics un-
certainty and to understand the detectability of ductile
fraction. The results support a detectability of ductile
fraction using PS data or large offset PP data.

Finally, a set of synthetic models were constructed that
are a realistic reproduction of the stratigraphy and rock
physics of the Marcellus shale play. These models in-
cluded uncertainty in the rock physics, angle dependent
wavelet effects, seismic noise, and complex model reflec-
tion interference. Studied were both problems induced
by these complexities, and the advantages introduced by
multiple extra data associated with the multiple reflec-
tors (times and reflection strength), multiple stacks, dif-
ferential tuning of the different stack bandwidths, and
prior model assumptions. The results confirm the signif-
icant value of multi-component Bayesian inversion (in-
cluding PS data) and the feasibility of the detection of
ductile fraction of the objective shales.

1M. D. Zoback, A. Kohli, and M. McClure, Proceedings of the
Americas Unconventional Resources Conference, Pittsburg, PA
(2012).

2A. H. Kohli and M. D. Zoback, Journal of Geophysical Research:
Solid Earth 118, 5109 (2013).

3D. H. Portis, H. Bello, M. Murray, B. Suliman, G. Barzola,
N. Basu, et al., in Unconventional Resources Technology Con-
ference (Society of Petroleum Engineers, 2013).

http://dx.doi.org/10.1002/jgrb.50346
http://dx.doi.org/10.1002/jgrb.50346
http://dx.doi.org/10.1190/URTEC2013-018
http://dx.doi.org/10.1190/URTEC2013-018


19

4D. Demartini and M. E. Glinsky, J. Appl. Phys. 100, 014910
(2006).

5J. Gunning and M. E. Glinsky, Geophysics 72, R37 (2007).
6S. L. Bryant, C. Lerch, and M. E. Glinsky, J. Sedimentary Res.
79, 817 (2009).

7D. Stauffer and A. Aharony, Introduction to percolation theory
(CRC press, 1994).

8B. Goodway, M. Perez, J. Varsek, and C. Abaco, The Leading
Edge 29, 1500 (2010).

9H. Veire and M. Landr, Geophysics 71, R1 (2006).
10F. Mahmoudian and G. Margrave, in SEG Technical Program
Expanded Abstracts (2004) Chap. 60, pp. 240–243.

11R. Stewart, J. Gaiser, R. Brown, and D. Lawton, Geophysics
67, 1348 (2002).

12Y. Khadeeva and L. Vernik, in SEG Technical Program Expanded
Abstracts (2013) Chap. 535, pp. 2757–2761.

13B. Hornby, L. Schwartz, and J. Hudson, Geophysics 59, 1570
(1994).

14C. Sayers, The Leading Edge 32, 1514 (2013).
15L. Vernik and M. Kachanov, Geophysics 75, E171 (2010).
16C. Sayers, Geophysical Prospecting 53, 667 (2005).
17Z. Guo, X.-Y. Li, C. Liu, X. Feng, and Y. Shen, Journal of

Geophysics and Engineering 10, 025006 (2013).
18S. Saleh and J. de Bruin, in SEG Technical Program Expanded
Abstracts (2000) Chap. 32, pp. 126–129.

19E. Causse, M. Riede, A. van Wijngaarden, A. Buland, J. Dutzer,
and R. Fillon, Geophysics 72, C59 (2007).

20E. Causse, M. Riede, A. van Wijngaarden, A. Buland, J. Dutzer,
and R. Fillon, Geophysics 72, C71 (2007).

21I. Varela, S. Maultzsch, M. Chapman, and X. Li, in SEG Tech-
nical Program Expanded Abstracts (2009) Chap. 417, pp. 2075–
2079.

22J. Gunning and M. E. Glinsky, Computers and Geosciences 32,
681 (2006).

23J. Gunning and M. E. Glinsky, Computers and Geosciences 30,
619 (2004).

24J. Chen and M. E. Glinsky, in SEG Technical Program Expanded
Abstracts, Houston, TX , paper 305 (Society of Exploration Geo-
physicists, 2013) Chap. 325, pp. 1669–1673.

25C. Clarkson, N. Solano, R. Bustin, A. Bustin, G. Chalmers,
L. He, Y. Melnichenko, A. Radliski, and T. Blach, Fuel 103,
606 (2013).

26D. Han, A. Nur, and D. Morgan, Geophysics 51, 2093 (1986).
27M. Pervukhina, C. Piane, D. Dewhurst, M. Clennell, and

H. Bols, in SEG Technical Program Expanded Abstracts (2013)
Chap. 515, pp. 2653–2658.

28R. K. Shaw and M. K. Sen, Geophysical Journal International
158, 225 (2004).

29M. Maggiore, A Modern Introduction to Quantum Field Theory
(Oxford University Press, Oxford, 2010) pp. 43–50, 109–116, 144–
153, 231–241.

30B. B. Sageman, A. E. Murphy, J. P. Werne, C. A. V. Straeten,
D. J. Hollander, and T. W. Lyons, Chemical Geology 195, 229
(2003).

http://dx.doi.org/10.1063/1.2210171
http://dx.doi.org/10.1063/1.2210171
http://dx.doi.org/10.1190/1.2713043
http://dx.doi.org/10.2110/jsr.2009.082
http://dx.doi.org/10.2110/jsr.2009.082
http://library.seg.org/doi/abs/10.1190/1.3525367
http://library.seg.org/doi/abs/10.1190/1.3525367
http://library.seg.org/doi/abs/10.1190/1.2194533
http://library.seg.org/doi/abs/10.1190/1.1851239
http://library.seg.org/doi/abs/10.1190/1.1851239
http://library.seg.org/doi/abs/10.1190/1.1512781
http://library.seg.org/doi/abs/10.1190/1.1512781
http://library.seg.org/doi/abs/10.1190/segam2013-0986.1
http://library.seg.org/doi/abs/10.1190/segam2013-0986.1
http://library.seg.org/doi/abs/10.1190/1.1443546
http://library.seg.org/doi/abs/10.1190/1.1443546
http://library.seg.org/doi/abs/10.1190/tle32121514.1
http://library.seg.org/doi/abs/10.1190/1.3494031
http://dx.doi.org/10.1111/j.1365-2478.2005.00495.x
http://stacks.iop.org/1742-2140/10/i=2/a=025006
http://stacks.iop.org/1742-2140/10/i=2/a=025006
http://library.seg.org/doi/abs/10.1190/1.1815626
http://library.seg.org/doi/abs/10.1190/1.1815626
http://library.seg.org/doi/abs/10.1190/1.2668600
http://library.seg.org/doi/abs/10.1190/1.2712176
http://library.seg.org/doi/abs/10.1190/1.3255266
http://library.seg.org/doi/abs/10.1190/1.3255266
http://dx.doi.org/10.1016/j.cageo.2005.10.001
http://dx.doi.org/10.1016/j.cageo.2005.10.001
http://dx.doi.org/10.1016/j.cageo.2003.10.013
http://dx.doi.org/10.1016/j.cageo.2003.10.013
http://www.qitech.biz/tech_papers/GPH_floating_grain_13.pdf
http://www.qitech.biz/tech_papers/GPH_floating_grain_13.pdf
http://dx.doi.org/10.1016/j.fuel.2012.06.119
http://dx.doi.org/10.1016/j.fuel.2012.06.119
http://library.seg.org/doi/abs/10.1190/1.1442062
http://library.seg.org/doi/abs/10.1190/segam2013-0818.1
http://dx.doi.org/10.1111/j.1365-246X.2004.02283.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02283.x
http://dx.doi.org/10.1016/S0009-2541(02)00397-2
http://dx.doi.org/10.1016/S0009-2541(02)00397-2

	Rock physics and geophysics for unconventional resource, multi-component seismic, quantitative interpretation
	Abstract
	Introduction
	Theory
	Rock physics
	Geophysical forward model
	Singular value decomposition theory

	Applications
	Singular value decomposition analysis
	Principal component analysis of stack weights of real data
	Detectability including rock physics uncertainty
	Marcellus prototype model
	Model based inversion

	Conclusions


