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Five simple scaling solutions
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predicts:
fast ion generation
magnetic field generation
self similar plasma conditions
E-field transport inhibition
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for Z = 79

Glinsky, Phys. Plasmas 2, 2796 (1995).



Outline of presentation

▪ derivation of basic equations 
▪ five regimes of superthermal electron transport: 

▪ free streaming, transient J.E 
▪ J.E 
▪ J.E to cold electron collisional drag transition 
▪ cold electron collisional drag 
▪ diffusive 

▪ applications: 
▪ fast ion generation 
▪ magnetic field generation 
▪ self similar plasma conditions 
▪ E-field transport inhibition
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Starting point for physics
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Full moment equations
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wherecold electron equations

(momentum)

(energy)

thermoelectric pressure
hot-cold electron collisional drag

thermal diffusion
J•E heating

hot-cold electron collisional drag heating

where
hot electron equations

(momentum)

(energy)



Reduced set of equations
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nc = constant � nh

Th � Tc

J = �Jh (quasi-neutrality)
uh ⌧

p
3Th/me

now assume:
1.
2.
3.
4.

which gives the following set of 1D equations:

uh 
p

3Th/me

(cold electron momentum, Ohm’s law)

(cold electron energy)

(hot electron momentum)

(hot electron energy)

(hot electron flux limit)



Dimensionless equations
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uh =
u⇤
h

p
3Th

u⇤
h +

p
3Th

using these variables to scale the quantities:
u0 ⌘ J0

enc
T0 ⌘ mu2

0

b0 ⌘ e2/T0 1/⌧0 ⌘ ncb
2
0u0Z ln⇤

two coupled 1D nonlinear 
parabolic partial differential 

equations

and boundary conditions:



Simple scalings
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where the density and thermal scale lengths are defined as:

hot electron resistivity

cold electron resistivity

flux limit

thermal diffusion
J•E heating

advection

hot-cold electron drag heating

drag heatingJ•E heating



Regimes determined by which terms 
dominate
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@Tc

@t
⇠

@nh

@t
⇠

Ln ⇠

J•E J•E drag drag diffusion

advection

flux limit

advection

cold electron 
resistivity

advection 
vs. drag

cold electron 
resistivity

hot electron 
resistivity

advection 
vs. drag

hot electron 
resistivity

advection 
vs. drag



Example solutions
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Tc/T0 nh/nc L/u0⌧0

simple scaling

numerical 
solution

for Z = 79 and Th/T0 = 10

4

LT

Ln

diffusive limit

Ln 
p
Z/2B2 T 2

h ⌧
p

3Th t

free streaming 
limit�



Comparison to LASNEX
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LASNEX

numerical 
solution LT

Ln

Tc(keV) nh(10
21/cc) L(µm)

1D LASNEX with multigroup hot electron diffusion

3⇥ 1017W/cm2, Th = 100keV, nc = 0.24gm/cc



APP: fast ion generation
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supra thermal electrons

plasma
nc, Tc, Z

J0, Th

fast ions

vi,mi, Ei, pi

1ps, 1017W/cm

2, 80 keV, Z⇤
= 25 for Au

500Å

momentum and energy exchange at surface:

ion velocity from two expressions for ion energy:

use of      scaling gives:

compare to rate of hot electron production:

nh



APP: magnetic field generation
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3⇥ 1017W/cm2, Th = 100 keV, nc = 0.24gm/cc

simple scaling

numerical 
solution

Ḃ = �cr⇥ E ⇠ cE/Ls

E = B0(AZ ln⇤)(Tc/T0)
�3/2

B0 ⌘ e3nc/T0

from Maxwell’s equations:

from Ohm’s law for cold electrons:



APP:  similar plasma conditions
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Th ⇠ (I�2)1/3

Is,�s ! ns, ⌧s

ns = nc

✓
Is
I

◆1/2 ✓�s

�

◆

⌧s = ⌧pulse

✓
�s

�

◆�1

I = 1019W/cm2,� = 0.1µm, ⌧pulse = 1ps, nc = 1026/cc

from Kruer & Eastbrook:

given base conditions, find:

Is = 1015W/cm2,�s = 1µm, ⌧s = 100ps, nc = 1023/cc

Is(W/cm2) Is(W/cm2)



APP: E-field transport inhibition
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2% absorption of 3⇥ 10

15
W/cm

2, ⌧ = 100 ps,� = 1µm, Th = 14 keV

⌧
/⌧

0

supra thermal electrons

plasma

J0, Th

nc, Tc, Z
⇤ = 30

gold foil targets of 
solid and 0.5% solid 
density

Bond, Hares, Kilkenny, PRL 45, 252 (1980).

4x range 
shortening for 
0.5% solid 
density 

K↵ x-rays

L
n

⌧ min[(3T
h

)

1/2t, (Z/2B2
)

1/2T 2
h

] = L
max

if E-field inhibited transport

L
n

= L
max

for solid

L
n

= 0.25L
max

for 0.5 % solid

Beg et al., Phys. Plasmas 4, 447 (1997).
(for 10

19
W/cm

2
)

Au Ca
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