
Habanero-Java extensions for Scientific Computing

Vincent Cavé
Rice University

vc8@rice.edu

Zoran Budimlić
Rice University

zoran@rice.edu

Jun Shirako
Rice University

shirako@rice.edu
Yonghong Yan
Rice University

yanyh@rice.edu

Jisheng Zhao
Rice University

jz10@rice.edu

Vivek Sarkar
Rice University

vsarkar@rice.edu
Michael Glinsky

Australian Commonwealth
Scientific and Industrial
Research Organisation

Michael.Glinsky@csiro.au

James Gunning
Australian Commonwealth

Scientific and Industrial
Research Organisation

James.Gunning@csiro.au

ABSTRACT
Mainstream object-oriented languages such as Java and C#,
through the use of object-oriented abstractions and managed
runtimes (virtual machines), have significantly improved pro-
ductivity and portability in multiple application domains.
However, despite many attempts in the past, the effect of
these improvements on high-performance numeric computa-
tions has been limited. In this report, we describe the results
and lessons learned from a one-year joint study between re-
searchers in an industrial company (BHP Billiton) and an
academic institution (Rice University) to port Dipole1D, an
open source Fortran 90 application for 1D forward modeling
of an arbitrarily located and oriented electric dipole trans-
mitter, to Java with a goal of gaining efficient sequential
and multicore implementations. Our primary conclusions
from this study are as follows: 1) a standard library-based
implementation of Fortran 90 primitives in Java (especially
complex arithmetic and complex variables) results in un-
acceptably large performance overheads, 2) the Java byte-
codes generated from this translation include large methods
for which current JIT compilers generate surprisingly inef-
ficient code, 3) hand splitting of the large methods removes
much of this inefficiency, and 4) after building the sequen-
tial extended-Java version of the Dipole1D application, the
path to multicore execution is greatly simplified. The re-
sulting Habanero-Java version of Dipole1D is in the process
of being made available publicly, and sheds light on missed
opportunities from the past, such as JSR 84 (Floating Point
Extensions) which has been withdrawn in 2002.

1. HABANERO JAVA
The Habanero Java (HJ) language [2] developed at Rice

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLASH ’10 October, Reno, NV.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

University is derived from X10 v1.5 [8], which in turn was
based on the Java v1.4 language specification. HJ has made
multiple modifications to X10 v1.5, including an extension
of X10’s clocks called phasers, relaxation of X10’s atomic
construct to isolated and others, discussed later in this pa-
per. The code generated by the HJ compiler consists of Java
classfiles that can be executed on any standard JVM. Like-
wise, the HJ runtime system is written in standard Java,
and can also be executed on any standard JVM. A brief
summary of the key constructs in HJ is included below.
async: Async is the HJ construct for creating or forking
a new asynchronous task (as in X10 v1.5). The statement
async 〈stmt〉 causes the parent task to create a new child
task to execute 〈stmt〉 (logically) in parallel with the parent
task. 〈stmt〉 is permitted to read/write any data in the heap
and to read (but not write) any local variable belonging to
the parent task’s lexical environment.
finish: The HJ statement finish 〈stmt〉 causes the parent
task to execute 〈stmt〉 and then wait until all sub-tasks cre-
ated within 〈stmt〉 have terminated (including transitively
spawned tasks, as in X10 v1.5). Operationally, each instruc-
tion executed in an HJ task has an unique Immediately En-
closing Finish (IEF) statement instance [7].

Besides termination detection, the finish statement plays
an important role with regard to exception semantics. As
in X10, an HJ task may terminate normally or abruptly.
A statement terminates abruptly when it throws an excep-
tion that is not handled within its scope; otherwise it ter-
minates normally. If any async task terminates abruptly
by throwing an exception, then its IEF statement also ter-
minates abruptly and throws a MultiException [1] formed
from the collection of all exceptions thrown by all abruptly-
terminating tasks in the IEF. (In contrast, in the Java model
an exception is simply propagated from a thread to the top-
level console.)
future: HJ includes support for async tasks with return
values in the form of futures. The statement, “final fu-

ture<T> f = async<T> Expr;” creates a new child task to
evaluate Expr that is ready to execute immediately. (Expr
may consist of a statement block ending with a return state-
ment.) In this case, f contains a “future handle” to the
newly created task and the operation f.get() (also known
as a force operation) can be performed to obtain the result

of the future task. If the future task has not completed as
yet, the task performing the f.get() operation blocks un-
til the future task completes and the result of Expr become
available.
isolated: The isolated construct enables execution of a
statement in isolation (mutual exclusion) relative to all other
instances of isolated statements. The statement isolated

〈Stmt〉 executes 〈Stmt〉 in isolation with respect to other
isolated statements. As advocated in [4], we use the isolated
keyword instead of atomic to make explicit the fact that the
construct supports weak isolation rather than strong atomic-
ity. Commutative operations, such as updates to histogram
tables or insertions into a shared data structure, are a nat-
ural fit for isolated blocks executed by multiple tasks.
phasers: The phaser construct [7] integrates collective and
point-to-point synchronization by giving each task the op-
tion of registering with a phaser in signal-only/wait-only
mode for producer/consumer synchronization or signal-wait
mode for barrier synchronization. In addition, a next state-
ment for phasers can optionally include a single statement
which is guaranteed to be executed exactly once during a
phase transition [9]. These properties, along with the gen-
erality of dynamic parallelism and the phase-ordering and
deadlock-freedom safety properties, distinguish phasers from
synchronization constructs in past work including barriers [5],
counting semaphores [6], and X10’s clocks [1].

In general, a task may be registered on multiple phasers,
and a phaser may have multiple tasks registered on it. Two
key phaser operations are:
• new: When a task Ai performs a new phaser() operation,
it results in the creation of a new phaser ph such that Ai is
registered with ph.
• next: The next operation has the effect of advancing each
phaser on which the invoking task Ai is registered to its
next phase, thereby synchronizing all tasks registered on
the same phaser. In addition, a next statement for phasers
can optionally include a single statement, next {S}. This
guarantees that the statement S is executed exactly once
during the phase transition [9, 7]. We define the exception
semantics of the single statement as follows: an exception
thrown in the single statement causes all the tasks blocked
on that next operation to terminate abruptly with a single
instance of the exception thrown to the IEF task1. While
our HJ phaser implementation also supports explicit signal
and wait operations on phasers, it is important to point out
that structuring the parallel program so that all the tasks
use only the next operation for synchronization guarantees
deadlock freedom among the synchronizing tasks, a key us-
ability feature of HJ.
forall: The statement forall (point p : R) S supports
parallel iteration over all the points in region R by launching
each iteration as a separate async, and including an implicit
finish to wait for all of the spawned async’s to terminate.
A point is an element of an n-dimensional Cartesian space
(n ≥ 1) with integer-valued coordinates. A region is a set of
points, and can be used to specify an array allocation or an
iteration range as in the case of forall.

Each dynamic instance of a forall statement includes an
implicit phaser object (let us call it ph) that is set up so that
all iterations in the forall are registered on ph in signal-wait

1Since the scope of a phaser is limited to its IEF, all tasks
registered on a phaser must have the same IEF.

mode 2. Since the scope of ph is limited to the implicit finish
in the forall, the parent task will drop its registration on
ph after all the forall iterations are created.

2. COMPLEX NUMBERS

2.1 Existing Options
Java programmers have two limited options when it comes

to using complex numbers in their programs: implementing
complex as a pair of primitive real numbers or implementing
complex numbers as Java objects.

Since complex arithmetic is quite verbose, the solution
based on pairs of primitive real numbers makes programs
quickly difficult to read and understand. Implementing com-
plex arithmetic using functions does not help either since
functions cannot return pairs of data. In this situation the
object-oriented approach sounds more appealing. However,
programmers now need to write method calls in place of op-
erators to perform arithmetic operation, which makes the
code verbose and difficult to read. Regarding performance,
the major drawback of the object-oriented approach is the
need to instantiate new complex objects, an expensive oper-
ation compared to the cost of performing simple arithmetic
operations. Therefore, to be as efficient as possible, sev-
eral different method implementations must be offered for
each arithmetic operation, some performing in-place compu-
tation and some returning a new complex object. Although
the API can circumvent object creation in various ways by
passing around results and parameters to methods, the syn-
tax becomes more complicated and error prone.

2.2 Primitive Type-based Complex Numbers
We have implemented complex numbers in the Habanero-

Java language by introducing two new types: complex32 (32
bits single-precision) and complex64 (64 bits double preci-
sion).

These types can be used as any other regular primitive
types. The compiler provides support for declaration, as-
signment, arithmetic operations, conversions, promotions and
arrays of complex. Declarations can be constants, local vari-
ables and field of objects. A method can take complex as
argument as well as return value.

A complex number is declared by specifying a pair rep-
resenting the real and the imaginary part. Accessing the
real and the imaginary part of a complex is done through
the real and imag functions that take a complex number
as an argument. Figure 1 shows an example of the syntax
for declaring a complex variable, a complex array and print
a complex value. Complex literals and variables are trans-
formed to a String for printing and whenever a conversion
to the String type is required.

The syntax for arithmetic operations involving complex
numbers is identical to operations involving regular primi-
tive types. The compiler provides support for addition, sub-
traction, multiplication and division as well as compound
assignment for these operations. Additionally, Habanero-
Java provides a library that implements mathematical op-
erations to compute the exponential, the square root and

2For readers familiar with the foreach statement in X10
and HJ, one way to relate forall to foreach is to think
of forall 〈stmt〉 as syntactic sugar for “ph=new phaser();
finish foreach phased (ph) 〈stmt〉”.

complex32 cx = (1.0f, 2.0f);

float r = real(cx);

float i = imag(cx);

complex64 [] a = new complex64[size];

for (int k=0; k < a.length; k++) {

a[k] = a[k] * cx;

System.out.println(a[k]);

}

Figure 1: Examples of complex variables and arrays
declarations and usages.

complex32 cx = (1.0f, 2.0f);

complex32 add = cx + (1.0f, 2.0f);

complex32 sub = cx - (2.0f, 2.0f);

complex32 mul = cx * cx;

complex32 div = cx / (2.0f, 2.0f);

complex64 cy = (1.0, 2.0);

cy += 1;

cy -= (2.0, 2.0);

cy *= cx;

cy /= (2.0, 2.0);

cx = cabs((2.0,2.0));

cx = csqrt(cy);

cx = cexp(cy);

Figure 2: Examples of arithmetic operation and im-
plicit type promotions involving complex numbers.

the absolute value of a complex number. Figure 2 shows
some examples of using arithmetic operators and examples
of implicit type promotions in presence of complex numbers.

Providing programmers with a support for complex num-
ber as a primitive type offers better productivity compared
to custom implementations using pairs of reals or objects.
It also makes porting from legacy code supporting complex
(such as Fortran 90) to Habanero-Java much more straight-
forward as the syntax used is similar.

2.3 Implementation
The compiler translates all complex numbers to pairs of

Java primitive floating-point numbers, keeping the gener-
ated bytecode in pure Java. Code generation of simple op-
erations such as declarations and access to real or imaginary
parts is straightforward. For instance, a complex variable
declaration is simply split into two variable declarations of
the corresponding primitive type, float for complex32 and
double for complex64. The compiler takes care of transform-
ing complex constants, variables as well as fields of objects to
pairs of real numbers. Getting the real or the imaginary part
of a complex is rewritten as a read of the corresponding vari-
able. Arithmetic operations are slightly more complicated
since the compiler needs to generate proper arithmetic ex-
pressions and use the appropriate real and imaginary vari-
ables for each complex involved in the operation.

The compiler also supports complex arguments and return
values. If the method signature contains a complex as a pa-
rameter it is rewritten as a pair of parameters in order to

float cx_r = 1.0f;

float cx_i = 2.0f;

float r = cx_r;

float i = cx_i;

double [] a = new double[size*2];

for (int k=0; k < (a.length/2); k++) {

a[k] = (a[k]*cx_r) - (a[k+1]*cx_i);

a[k+1] = (a[k+1]*cx_r) + (a[k]*cx_i);

System.out.println("(" + a[k] +

"," + a[k+1] + ")");

}

Figure 3: Code generated by the Habanero-Java
compiler from the example shown in Figure 1.

represent both the real and the imaginary parts of the com-
plex. If the function returns a complex, the default strategy
is to inline the call. The compiler also supports another code
generation strategy where the primitive complex to be re-
turned is boxed into an object. Note that the compiler takes
care of renaming methods that had their signature changed
to avoid any collision with methods already defined.

Figure 3 shows how the example shown in Figure 1 looks
like after the compiler transformed complex declaration and
uses. The first complex32 declaration is split into two float
variables and calls to the real and imag accessors are trans-
formed to directly refer to those variables. Arrays length is
doubled so as to be able to store pairs of real and imagi-
nary. In order to keep loop traversal consistent the compiler
then needs to divide by two the value returned when get-
ting the length of an array from its length field. The loop
body shows how the multiplication operation which is simply
written using the star operator is expanded as the complex
multiplication by getting real and imag parts from both a
complex array element and a complex variable. The last
statement of the loop shows how a complex array element is
transformed to a String by reading both its real and imagi-
nary part. The transformation of complex numbers to pairs
of variable multiply by two the number of variables declared
in a program. However, further compiler passes can greatly
optimize this code by mean of classic compiler optimization
such as constant propagation, code motion and load elimi-
nation.

2.4 Performance
We have developed a set of micro-benchmarks in order to

evaluate the performance of our implementation of primitive
complex. The micro-benchmarks evaluate the time it takes
to perform arithmetic operations on complex numbers, these
include simple arithmetic operations such as add, subtract,
multiply, divide and some more advanced arithmetic oper-
ations such as square root, exponential and absolute value.
In the context of the Dipole1D application we particularly
focus on performing complex number operations on arrays of
complex numbers declared as fields of objects. Every micro-
benchmark applies an operator and stores the result to an
array of complex declared as a field of an object. The micro-
benchmarks are divided in four sets, each of them apply ad-
dition, subtraction, multiplication and division. The first set
applies operators to complex arrays using a compound state-
ment, the second set to a complex from an array and a real

0	 1	 2	 3	 4	 5	 6	

cz[]	 =	 cx[]	 +	 cy[]	

cz[]	 =	 cx[]	 -‐	 cy[]	

cz[]	 =	 cx[]	 *	 cy[]	

cz[]	 =	 cx[]	 /	 cy[]	

cz[]	 =	 cx[]	 +	 var	

cz[]	 =	 cx[]	 -‐	 var	

cz[]	 =	 cx[]	 *	 var	

cz[]	 =	 cx[]	 /	 var	

cx[]	 +=	 cy[]	

cx[]	 -‐=	 cy[]	

cx[]	 *=	 cy[]	

cx[]	 /=	 cy[]	

cz[]	 =	 csqrt(cx[])	

cz[]	 =	 cabs(cx[])	

cz[]	 =	 cexp(cx[])	

Figure 4: Speed-up using the Habanero-Java
primitive-based complex implementation compared
to the Java object-oriented implementation for var-
ious arithmetic operations.

variable and the third set to complex numbers taken from
two different arrays. A last set of micro-benchmarks evalu-
ates the advanced arithmetic operations mentioned earlier.

We have developed three versions of the micro-benchmarks
for Fortran 90, Java and Habanero-Java. The Java ver-
sion uses complex implemented in an object-oriented fashion
whereas the Habanero-Java version uses complex as a prim-
itive type. The Fortran 90 version has been compiled with
the O3 optimization flag, Java and HJ implementations are
ran with the 1.6 SUN Java virtual machine using the -server
option.

Figure 4 shows micro-benchmarks speed-up gained when
using the primitive-based complex number implementation
as opposed to the object-based one.

Not surprisingly we can observe the primitive-based com-
plex implementation matches or outperforms the object one
in all scenarios. The speed-up ranges from similar perfor-
mance to a factor of five. The largest difference is seen
when the object-based implementation has to instantiate
new complex objects. When the object-based implementa-
tion does in-place updates, the advantage of the primitive-
based implementation is still up to a factor of two, due to
the elimination of costs introduced by method calls and field
accesses.

Figure 5 compares our primitive-based complex imple-
mentation to native Fortran 90. The Habanero-Java imple-
mentation is roughly twenty percent slower than the Fortran
90 one.

3. USE CASE DIPOLE 1D
Dipole1D [3] is the kernel of an Inversion Program for Gen-

erating Smooth 1D Models from Controlled-Source Electro-
magnetic and Magnetotelluric Data (OCCAM1DCSEM). It
computes the frequency–domain electromagnetic fields pro-
duced by a point dipole source embedded in a layered medium,

0	 0.5	 1	 1.5	 2	 2.5	

cz[]	 =	 cx[]	 +	 cy[]	

cz[]	 =	 cx[]	 -‐	 cy[]	

cz[]	 =	 cx[]	 *	 cy[]	

cz[]	 =	 cx[]	 /	 cy[]	

cz[]	 =	 cx[]	 +	 var	

cz[]	 =	 cx[]	 -‐	 var	

cz[]	 =	 cx[]	 *	 var	

cz[]	 =	 cx[]	 /	 var	

cx[]	 +=	 cy[]	

cx[]	 -‐=	 cy[]	

cx[]	 *=	 cy[]	

cx[]	 /=	 cy[]	

cz[]	 =	 csqrt(cx[])	

cz[]	 =	 cabs(cx[])	

cz[]	 =	 cexp(cx[])	

Figure 5: Speed-up using the Habanero-Java
primitive-based complex implementation compared
to Fortran 90 for various arithmetic operations.

together with the derivative (or sensitivity/Jacobian) matrix
of those fields with respect to the resistivity of the layers
in the medium. This problem is essential to new remote-
sensing methods for oil/gas exploration using towed deep-
marine dipole sources and seabed receivers, usually called
”Controlled Source Electromagnetics (CSEM)”, or ”Seabed
logging (SBL)”.

We have implemented three versions of the Dipole1D ap-
plication using Habanero-Java: a direct port from Fortran
90 using complex numbers as objects, a direct port using
complex numbers as primitive types, and a hand-optimized
version of the primitive-based implementation.

3.1 Experiments
Our experiments are based on running the Dipole1D ker-

nel using six different use-case inputs that exercise various
parts of the code and varies the number of transmitters,
frequencies, layers and receivers. We have ran these bench-
marks through the three implementations of dipole 1D and
compared results with the original Fortran 90 implementa-
tion. All experiments measure the duration of Dipole1D core
computation and do not take into account neither the appli-
cation setup phase nor the result saving phase. The Fortran
90 version of Dipole1D has been compiled with GFortran
4.1.2 and the O3 optimization flag set. The Habanero-Java
version of Dipole1D uses Habanero-Java version 1.1 running
with Java 1.6.0 14.

Our starting point is to compare the Fortran 90 version of
Dipole1D with the Habanero-Java implementation that re-
lies on complex numbers implemented as objects. On aver-
age, benchmarks show that this implementation of Dipole1D
is forty-nine times slower than its Fortran 90 counterpart.

Micro-benchmarks showed that complex numbers imple-
mented as a primitive type achieve very good performance
compared to an object-based implementation. This result
is repeated for the Dipole1D application, which heavily re-

lies on complex number arithmetic. Going from an object-
oriented complex implementation of Dipole1D to a primitive-
based increases performance on average by a factor of eight.
However, the primitive-based Dipole1D implementation is
still a factor of ten slower than native Fortran 90.

3.2 Optimizations
Micro-benchmarks presented in Figure 5 have indicated

that complex arithmetic in Habanero-Java should be within
a factor of two to a native Fortran 90 implementation, which
is clearly not the case for the direct port of Dipole1D. This
section presents an analysis of these performance problems
and solutions to them.

Method Size.
Profiling the application showed that most of the time

is spent in large methods that perform intensive arithmetic
computations involving complex numbers. We came to the
conclusion that the just-in-time compiler is not designed to
optimize large functions, being optimized to deal frequently
with a large number of relatively small methods rather than
few large monolithic methods.

For instance the Java HotSpot Just-In-Time (JIT) com-
piler has a heuristic that disables method inlining if the
caller method is too large, regardless of how short the callee
method is, or how important would its inlining be to overall
performance. This affects the Dipole1D application, since its
methods are very large, preventing the JIT compiler from
inlining even the simplest and shortest method calls, includ-
ing the manipulation of complex numbers.

The solution was to refactor the Dipole1D code by de-
composing all large methods into smaller ones containing
between twenty and forty lines of code. This transformation
can be done automatically by the compiler.

Inlining versus boxed return value.
Inlining is a typical optimization for object-oriented lan-

guages, as it can reduce the overhead for saving/restoring
the calling context. Since our compiler implementation forces
inlining of every method that returns complex numbers,
inlining can become detrimental to performance as it can
greatly increase the size of some methods. For such meth-
ods we use boxing to return complex value as the JIT may
then freely decide if it’s worth inlining the method call or
not. In this case one must be careful when to declare and
how to reuse these boxed objects to amortize the cost of
their creation.

Usage of the final keyword.
Using the final keyword can greatly help the JIT com-

piler in many situations including field accesses, conditional
branches and loop boundaries. The Dipole1D code uses a
lot of branch conditions to tests whether current iteration
of the computation is of a certain kind (linversion for exam-
ple). We have declared as final the majority of these boolean
variables to allow the JIT to eliminate most of the branch
conditions. We have also declared as final arrays that are
part of an object, to allow the compiler optimize array ac-
cesses since it then knows the reference to the array is not
going to change. Another optimization was to declare as
final some integer fields that are extensively used as upper
bounds in loops. This helps the JIT in array bounds check
elimination.

0	 0.5	 1	 1.5	 2	 2.5	

Test1NoSplineWithDeriv	

Test1SplineWithDeriv	

Test2NoSplineWithDeriv	

Test2SplineWithDeriv	

Test3NoSplineWithDeriv	

Test3SplineWithDeriv	

"Dipole1D	 op9mized"	 "Dipole1D	 non-‐op9mized"	

Figure 6: Speed-up of Dipole1D non-optimized and
optimized Habanero-Java implementations com-
pared to the Fortran 90 implementation.

3.3 Results
Experiments show that we gain a factor of four to thirteen

compared to the non-optimized Habanero-Java version.
If we compare these results to native Fortran 90 imple-

mentation they show a much more competitive performance.
Three tests show similar or better performance than For-
tran 90, two other tests show less than 50% overhead, and
only one case (Test1SplineWithDeriv) has an overhead fac-
tor greater than two. The culprit is inefficient standard
Java implementation of the the StrictMath.log10 function
on which the Test1SplineWithDeriv spends two thirds of its
execution time.

4. PARALLELIZATION OF DIPOLE1D
Since Dipole1D is a basic routine for similar (but much

more computationally demanding) 2D and 3D problems,
its parallelization is essential for the performance of those
higher-dimensionality problems. Dipole1D code offers sev-
eral possibilities for parallelization. In the computation core
there is an embarrassingly parallel outer loop over transmit-
ters, as well as a loop over frequencies, which can also be
parallelized.

4.1 Using HJ Constructs in Dipole1D
Although Dipole1D exhibits embarrassingly parallel loops

in the computation core, a preliminary refactoring of the
Dipole1D code is necessary. Since there is no concurrency
in the sequential version, data structures are all initialized
once at the beginning of the application and reused by over-
writing them from one iteration to another. This can be
done because there are no data dependencies between iter-
ations. However, exploiting the parallelism present in the
application introduces race-conditions on those data struc-
tures. Hence, the first step of the parallelization process is
to refactor the code so that each loop iteration can be ex-
ecuted in parallel without interfering with others. Worthy
notice that in this situation there is an inevitable trade-off
between parallelism and memory requirements.

Regarding the parallelization itself, one straightforward
way of taking advantage of an embarrassingly parallel loop
is to execute in parallel every iteration of the loop indepen-

dently from each other. This can be done very easily in HJ,
by wrapping the body of the loop in an async, which causes
each iteration of the loop to be executed concurrently to
others. However doing so is only effective if the amount of
work carried by each loop iteration is large enough to com-
pensate for the overhead of creating and managing asyncs.
One classical approach to leverage this problem is to divide
the iteration space of the loop into chunks. Such technique
allows to create coarser grain tasks and also allows mem-
ory reuse across iterations within a same chunk. A finish
block must enclose the loop to ensure iterations executed
asynchronously have ran to completion before proceeding
further.

4.2 Parallel Dipole1D Experiments
This section presents performance results of the parallel

Dipole1D implementation on a 16-core Intel Xeon SMP us-
ing Java version 1.6. In order to be worth using, the paral-
lel version of Dipole1D must process an input configuration
that exhibits enough parallelism. To assess performance of
the parallel version of Dipole1D we use a new use-case with
an increased number of transmitters and receivers. The
number of transmitters allows to control the number of it-
erations the outermost loop of the core computation. This
is the above mentioned embarrassingly parallel loop that we
have parallelized and divided into chunks. The number of
receivers influences how coarse each iteration within a chunk
is.

Figure 7 shows speed-up achieved when varying the num-
ber of asyncs relative to the sequential version. We can see
the speed-up curve stays close to the ideal speed-up when
the loop is divided in two to four asyncs, achieving respec-
tively 1.9x and 3.7x speed-up compared to the sequential
execution. When eight asyncs are used the speed-up still
increases (6.1x) but notably goes below the ideal speed-up.
When more than eight asyncs are used, speed-up starts to
decrease.

Since the test-bed machine has 16 cores, we can conclude
the observed performance decrease when going above eight
asyncs is not caused by computing resource starvation, but
rather by the increase in memory pressure as every async
needs to access arrays of complex stored in the heap con-
currently to perform computations. Therefore even though
the Dipole1D offers plenty of parallelism to be exploited,
the scaling of a parallel implementation is bounded by the
memory bandwidth.

5. CONCLUSIONS
We have developed an extension for the Habanero-Java

language to support complex numbers as a primitive type.
From a programmability point of view, it allows users to
perform basic arithmetic operations with complex numbers
similar to using other primitive types. From a performance
point of view, experiments showed that arithmetic opera-
tions are performed two to eight times faster than using an
object-based solution, which makes them comparable in per-
formance to optimized Fortran 90. We have implemented
two versions of the Dipole1D application using Habanero-
Java with complex numbers as a primitive type. The first
version was shown to be very inefficient, between four and
thirteen times slower than the Fortran 90 implementation.
Experiments have shown that the method size is a ma-
jor source of overhead, since the JIT compiler is having a

0	

1	

2	

3	

4	

5	

6	

7	

1	 2	 4	 8	 16	

Sp
ee
d-‐
up

	

Number	 of	 asyncs	 used	 to	 split	 the	 computa7on	 loop	

Figure 7: Dipole1D parallel version speed-up with
respect to sequential execution when varying the
number of asyncs to split the computation loop.

hard time optimizing them. We have implemented a hand-
optimized version of Dipole1D, which had its large methods
split into smaller ones. This version shows a radical perfor-
mance improvement and has an execution overhead within
a factor of two compared to the optimized Fortran 90 im-
plementation. Finally, we presented results of a parallelized
version of the Dipole1D application, which achieved speed-
up by exploiting the embarrassingly parallel nature of the
main computation loop using finish and async constructs.

We believe these language extensions are a first step to
widen acceptance of modern object-oriented languages into
the scientific application community by providing develop-
ers with features that improve productivity while retaining
acceptable performance compared to their original imple-
mentations.

6. REFERENCES
[1] P. Charles et al. X10: an object-oriented approach to

non-uniform cluster computing. In OOPSLA’05, pages
519–538, New York, NY, USA, 2005.

[2] Habanero Java. http://habanero.rice.edu/hj, Dec 2009.

[3] K. Key. One-dimensional inversion of multi-component,
multi-frequency marine csem data: Methodology and
synthetic studies for resolving thin resistive layers:
Geophysics. in review, 2008.

[4] J. R. Larus and R. Rajwar. Transactional Memory.
Morgan & Claypool, 2006.

[5] OpenMP Application Program Interface, version 3.0,
May 2008.
http://www.openmp.org/mp-documents/spec30.pdf.

[6] V. Sarkar. Synchronization Using Counting
Semaphores. In ICS’88, pages 627–637, July 1988.

[7] J. Shirako et al. Phasers: a unified deadlock-free
construct for collective and point-to-point
synchronization. In ICS ’08, pages 277–288, New York,
NY, USA, 2008. ACM.

[8] Release 1.5 of X10 system dated 2007-06-29, 2007.

[9] K. Yelick et al. Productivity and performance using
partitioned global address space languages. In
PASCO’07, pages 24–32, New York, NY, USA, 2007.
ACM.

