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ABSTRACT

We show that resolution and uncertainty in CSEM inversion is most naturally approached
using a Bayesian framework. Resolution can be inferred by either hierarchical models with
free parameters for effective correlation lengths (“Bayesian smoothing”), or model–choice
frameworks applied to variable resolution spatial models (“Bayesian splitting/merging”).
We find that typical 1D CSEM data can be modelled with quite parsimonious models,
typically O(10) parameters per common midpoint. Efficient optimizations for the CSEM
problem must address the challenges of poor scaling, strong nonlinearity, multimodality
and the necessity of bound constraints. The posterior parameter uncertainties are fre-
quently controlled by the nonlinearity, and linearised approaches to uncertainty are usually
very poor. In Markov chain Monte Carlo (MCMC) approaches the nonlinearity and poor
scaling make good mixing hard to achieve. An approximate frequentist method we call
the Bayesianized parametric bootstrap (sometimes called randomized maximum likelihood)
is much more efficient than MCMC in this problem, is considerably better than linearized
analysis, but tends to modestly overstate uncertainties. The software that implements these
ideas for the 1D CSEM problem is made available under an open–source licence agreement.
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INTRODUCTION

In recent years, controlled-source electromagnetic (CSEM) or seabed logging (SBL) tech-
niques have become a popular element of the hydrocarbon exploration toolkit. This method
is designed to detect resistive anomalies in the marine subsurface which may be due to
hydrocarbon accumulations. Taken in conjunction with seismic data for geological and
structural delineation, this tool is potentially a powerful discriminator between high and
low gas saturations, since gas saturation controls resistivity in a far more linear fashion
than it does seismic reflectivity in AVO studies. The CSEM technique is most useful when
sufficient geological knowledge is available to exclude lithological causes of high resistivity
near anomalous zones, such as sequences of evaporites, volcanics, or carbonates.

Many articles have appeared to date outlining the general nature of the CSEM ac-
quisition framework (Constable (2006); Tompkins and Srnka (2007); Constable and Srnka
(2007)). There are practical limitations on the suitability of the technique originating in
basic physics principles, such as the impact of the air wave in shallower waters, the limi-
tations on depth of penetration and detectability imposed by absorption and the thermal
noise of the transmitter–receiver system, frequency content restrictions from skin depths
etc. Notwithstanding these, a large number of offshore petroleum prospects in the world
still fall within the domain of applicability of the technique.

In our view, two overriding factors limit the usefulness of the technique. The first is
that deeper penetrations require low frequencies, and the diffusive energy fronts do not
justify sounding arrays with spacings very much smaller than the depth of interest, which
automatically limits resolution. The second is that the dynamic range of conductivity from
seawater to resistive anomalies (or deeper rocks) is usually at least several decades. These
large contrasts in resistivity make the changes in observed fields large and thus useful in
an exploration context, but they also make the inverse problem very hard. In an inverse–
problem context, the subsurface response is very poorly modelled as a “weak” deviation
from some “agnostic” reference model, so the Born approximation, so beloved and central
to seismic imaging, is rarely very useful for real CSEM data. Because the forward model
is strongly nonlinear in any resistivity parameters, the solution null space is nearly always
multimodal, badly scaled, and contorted in shape. We agree strongly with Snieder (1998)
that this character makes these problems particularly difficult.

These issues make meaningful 2 or 3 dimensional CSEM inversion a particularly dif-
ficult problem. The strong absorption induces a large dynamic range in the gradient or
sensitivity matrices, and since this makes the problem very poorly scaled, nearly all inverse
approaches require additional terms to improve the stability or conditioning of the matrices.
For diverse reasons, the bulk of the inverse–theoretical work done in the EM community is
not explicitly and overtly statistical in nature, but rather approaches the stability problem
using pragmatic Tikhonov–regularization methods. This in turn introduces the awkward
problem of how to estimate and justify the free parameters in these regularizing operators,
and make meaningful statements about what these pieces imply about model resolution
and uncertainty. Regularization is also, in our view, an unsatisfactory framework for the
problem of integrating other kinds of information, like rock–physics models, or data from
seismic acquisition.

Most of these conceptual difficulties disappear if a more explicitly statistical approach
to the inverse problem is taken. An extended survey is Evans and Stark (2002), who put
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the case eloquently: “Describing inverse problems in statistical language permits a unified
view of standard inversion techniques, and provides reasonable criteria for choosing among
them.” Sambridge et al. (2006) provide a theoretical framework strongly aligned with
ours, and offer a useful summary of the Bayesian approach to inverse problems and model
selection.

Modern Bayesian frameworks allow inverse problems to be stated as an inference problem
for the posterior distribution of a suite of model parameters and possible meta–parameters,
and questions about resolution or uncertainty are answerable directly from this posterior
distribution. Since such statements are conditional on the chosen model, a framework that
enables sensible comparison of different models, or families of models – even of varying
dimensionality – is very desirable. Such an apparatus is very natural in a Bayesian view,
and methods like Bayesian Model Selection and Bayesian Model Averaging (Hoeting et al.,
1999) have become popular in fields like sociology. We are not aware of any very satisfactory
approach to model uncertainty in inverse problems that use, for example, solely the lan-
guage of regularization. Bayesian approaches are also the most natural way to introduce
knowledge from other data sources or professional expertise, with its requisite precision and
inter-dependencies, via additional likelihood terms or priors. Multidisciplinary information
of this form is germane to earth resources delineation.

It is the purpose of this paper to illustrate two Bayesian approaches to the question of
resolution and uncertainty for the CSEM problem, and introduce the open–source reference
code DeliveryCSEM implementing these ideas for the 1D problem. This paper and the
code implementation are confined to the isotropic case, though it is now recognised that
modest electrical anisotropy is now more common than not. The central ideas of this paper
will extend readily to the anisotropic case, and the presentation is simplified when we need
not carry the tensorial notational baggage along. We do not wish to be miscontrued as
advocating isotropic 1D inversions for problems that are clearly dominated by 3D effects
or other forward–modelling issues. Nonetheless, for reasonably flat geometries without
significant bathymetry issues, the 1D approach is a good first approximation to the 3D
earth. Much can be learnt about the limits of resolution and inversion uncertainties by a
successful attack on the 1D problem.

It is also not the purpose of this paper to labour the virtues or drawbacks of acquisitional
details, like the number of frequencies to be measured, types of fields to be recorded, use
of phase, or other similar details. Other papers, for example Key (2009), take up these
issues. Our central themes are resolution and uncertainty via Bayesian approaches, so the
bulk of this paper is devoted to these topics. The novel contributions of this paper are the
application of model–selection, empirical–Bayes, and Bayesianized bootstrap ideas to CSEM
applications. Since we address disparate topics, some of the review material is necessarily
distributed under different sections. Citations indicate where we use established results.

The layout of this paper is as follows. In Approaches to resolution issues we introduce
the central ideas needed for Bayesian approaches to resolution inference. In Constrained
Bayesian inversion we present the machinery needed for resolution approaches based on
variable correlated priors on a fixed grid. Model hierarchies – splitting methods shows how
this machinery can be used to infer resolution via model choice, with the spatial correla-
tions switched off and the Bayesian model choice operating over models of varying spatial
discretization. The fundamental workhorse in both approaches is an efficient globalized,
bound–constrained nonlinear least squares optimization, so we visit several important top-
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ics in Optimization details: (1) efficient bound-constrained Gauss–Newton and Marquardt
techniques (2) multimodality and global optimization/enumeration (3) mode distinguisha-
bility or connectivity. Two methods for uncertainty evaluation follow in Approaches to
Inversion Uncertainty, one fully Bayesian (MCMC), the other a faster, approximate tech-
nique we call the Bayesianized parametric bootstrap. Some Examples Problems follow to
illustrate all the various ideas, a brief discussion of the Software, and the usual Conclusions.

APPROACHES TO RESOLUTION ISSUES

Resolution is most effectively understood as an interaction between the spatial represen-
tation (“gridding”) of a inversion model, and the effective number of degrees of freedom
which can be meaningfully estimated from the data. From this angle, there are two distinct
approaches to resolution. First, if a somewhat fine spatial model m is supplemented by well
chosen meta–parameters θ expressing effective spatial correlation, the resolution is embod-
ied in the marginal distribution for the correlation parameters θ given the data. Overfitted,
or excessively deconvolved, models correspond to low–probability regions of the correlation–
parameter posterior marginal distribution(s). Secondly, resolution can be approached as a
model–selection problem of choosing, among a family of models k = 1...N of varying spatial
discretization, the model or models having most posterior support in the data. Clearly the
measure of “support” implied here must incorporate automatic penalties for overfitting, so
the statistical significance of the models is the central issue.

Both of these approaches can be expressed in a Bayesian framework. We use the usual
notation L(d|m) for the likelihood of the data d (length nd) under model m, and p(m) for the
prior probability of the parameters in model m. The likelihood is often the most contentious
part of any Bayesian framework. It depends centrally on a model for the “effective” noise,
which is defined as the difference between modelled and (processed) data. This difference
clearly absorbs instrumental noise, external and cultural noise, and errors in the forward
modelling assumptions. Rarely is it beyond dispute that the computer model adequately
models the physics. One usually works with the pragmatic assumption that the data are
well processed (mistakes/outliers removed etc), the errors are zero–mean independent, and
the dominant unknown is the variance of the error. For reasons of analytical convenience,
Gaussian error models are most useful, so the likelihood is often of form L(d|m) ∼ exp(−(d−
f(m))T C−1

D (d− f(m))), with f(m) the forward model for the data, and the unknown noise
parameters σi buried in the matrix CD = diag{σ2

i }.

To provide some context, the 1D forward CSEM problem considered herein is a layer
based model, usually with transmitter close (≈ 30m) to the seafloor, receivers for electric or
magnetic fields on the seafloor, known resistivity through the seawater profile, and unknown
resistivity in each of some nlayers layers under the mudline, terminating in a half space. The
forward problem and sensitivity matrix ∂fi/∂mj for this configuration is a well–studied
problem (Key, 2009; Constable et al., 1987; Chave and Cox, 1982; Loseth, 2007), with
received fields a simple sum of Hankel transforms with kernels arising from reflectivity
recursions running down the stack of layers. The measurements di are taken as electric or
magnetic fields, unrolled over frequency and transmitter–receiver offset. Typically, the noise
estimates σi are initially estimated at some fraction of the field amplitude, say 5%, so these
have a large dynamic range. (The large range is required by the absorbtion of modelling
errors as much as anything else). The acquisition usually attempts to keep the source dipole

4



a constant height over the seafloor, and this can be used to advantage in splining the fast
Hankel transforms in the forward model to retrieve fields at all offsets for a given frequency
and transmitter height.

In the model selection problem, the central entity is the marginal model likelihood
(MML), obtained by integrating the Bayesian posterior density over the model parame-
ters:

πMML =

∫

L(d|m)p(m)dm.

This is sometimes called the evidence (Sambridge et al., 2006). In general, the inte-
gral is quite difficult to perform, but approximations like the Laplace approximation are
very effective if the posterior is modestly compact (Raftery, 1996). It is known that the
Laplace approximation behaves asymptotically like the celebrated Bayes Information Crite-
rion (BIC) (Denison et al., 2002; Raftery, 1996), and thus the MML, like the BIC, has the
required “Occamist” characteristic of favouring the simplest model that adequately explains
the data.

It is less obvious how the notion of “simplicity” is quantified and induced in the context
of single models with meta–parameters. Although a strict Bayesian would confine the
statement of “posterior knowledge” to the full posterior distribution, certain characteristics
of this distribution are usually of significant interest as point estimates. In particular (1) the
largest mode of the joint posterior distribution – usually called the maximum aposteriori
(MAP) point, and (2) the MAP point of particular marginal distributions, are of interest.
Within the extremely common multi–Gaussian framework for noise and prior distributions,
possibility (1) coincides with the minima of the negative log-posterior, a function which
often closely resembles typical “objective” functions used in regularization approaches.

Since the pioneering work of Fisher in the ’20s, statisticians of all flavours reflexively
associate point–estimates with maxima of probability functions, and maximum–likelihood
methods are virtually canonical in the statistical community. Under Gaussian error models,
these invariably lead to least–squares minimization problems. For this reason, regularization
approaches based on the optimization of penalized objective functions like

χ2(m, µ) = χ2
misfit(m) + µ||Dm||2, (1)

where µ is a “free” parameter, and D is an operator whose null space does not overlap
that of the forward model in χ2

misfit(m), always seem philosophically unsatisfactory, since
the mathematical optimum is clearly at µ = 0. Statisticians will instinctively feel that
something is missing from the “objective function” that favours simplicity (large µ).

A well–known approach to this difficulty is Morozov’s “discrepancy” principle (Hansen,
1998; Farquharson and Oldenburg, 2004). Assuming the model is rich enough to potentially
overfit the data, the multiplier µ can be set by minimizing (1) to a desired level of misfit,
say, χ2

misfit(m) ≈ nd. It is difficult to make statements about a strongly nonlinear problem
with great confidence, but we may take inspiration from what is known about the linear
case: Hansen’s discussions on the desired level of misfit are quite extensive, and recommend,
roughly, χ2

misfit ≈ nd − np, where there are np effective degrees of freedom. Essentially,
the target value nd − np is based on the known frequentist result in linear regression that
the (error–scaled) residual sum of squares has expectation nd − np if the regression model
is the same as that producing the data, and the error variance is correct.
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Use of the discrepancy principle is central to the well known OCCAM code of Con-
stable et al. (1987), but, as above, this framework does not yield a point estimate that is
obviously the maximum of some distribution. A common criticism is that the technique is
rather sensitive to the noise levels buried inside χ2

misfit(m), and in practice these are usu-
ally poorly known (LaBrecque et al., 1996; Farquharson and Oldenburg, 2004; Mitsuhata,
2004; LaBrecque et al., 1996). Pessimistic estimates lead to oversmoothed solutions, and
overoptimistic ones may prevent convergence at all. It is also common to see target values
χ2

misfit = nd invoked, even for rather rich models, and Hansen has demonstrated this leads
to oversmoothing in the linear context.

In a Bayesian approach, maximum likelihood estimation is possible for problems with
smoothing contributions (µ), but it is necessary to treat the smoothing parameters as gen-
uine meta–parameters in a hierarchical framework. The normalisation associated with the
meta–parameters then introduces the contributions which favour large values of the smooth-
ing, and compete with the data misfit terms. We suspect that is not widely understood in
the geophysical community that a Bayesian approach will naturally induce simplicity both
in the choice among models, but also in the inference of meta–parameters (e.g. smoothing)
within a model, so Occam’s razor is a natural consequence of Bayesian thinking. Thus
we would see “variable–smoothing” type inversions as a special kind of Bayesian inver-
sion, rather than a different approach. Parker has remarked that the OCCAM approach
is “...lacking theoretical underpinnings, but ... has been found to be remarkably effective
in practice”. We believe the Bayesian approach described in the following section, using
spatial correlation as a meta–parameter, supplies this missing theory. For the seismic case,
Gouveia and Scales (1997) provides another perspective on the relationship between Bayes
and Occam, but we hasten to add that the nature of the forward model null spaces are very
different in the seismic and CSEM problems, so some of the phenomenology observed in
this paper does not carry across.

In the non–Bayesian context, simplicity–favouring terms in the objective function can
flow from principles like generalised cross–validation (Farquharson and Oldenburg, 2004;
Mitsuhata, 2004; O’Sullivan, 1986). This technique has a strong reputation for robustness
across many disciplines. Nonetheless, it is known that the asymptotic behaviour of cross–
validation is similar to the Akaike information criterion, which is not a consistent estimator
for large data (Gelfand and Dey, 1994; Nishii, 1984). Our Bayesian approach will have
consistent asymptotics, possibly at the price of excessive parsimony for smaller data sets,
but the ongoing controversy in the statistical literature between Bayesian and frequentist
methods for model choice is not a topic we wish to labour here.

Some known invariances for the 1D CSEM problem are useful to recall at this point.
Loseth (2007) has shown that if a subsurface resistive layer is present against a more typical
(say 1Ω.m) conductive background, the dominant mode of energy transmission is a TM
mode, with vertical electric field. His analytical approximations for the Hankel transforms
show that this response is controlled by the resistivity–thickness product of the anomalous
layer. We expect then that the response of a packet of layers thinner than the “natural”
data resolution will be controlled by the resistivity–thickness product of the effective medium
formed by these layers. This forms a useful test cases for many of the subsequent ideas.
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CONSTRAINED BAYESIAN INVERSION FOR MODEL, NOISE AND

SPATIAL CORRELATION

Our inversion code can perform several flavours of inversion, all of which can be understood
as special cases of the following general framework. We are interested in inverting for np

model parameters mi = log10 ρi (the layer resistivities are ρi), jointly with meta–parameters
describing spatial correlation structures (µ) or parameters of the noise distribution (σn).
The full parameter vector is M = {m, µ, σn}.

A standard Bayesian approach to inversion (Tarantola, 1987), based on a multi-Gaussian
model of the errors and with a multi–Gaussian expression for the prior with prior mean mp

and covariance Cp(µ), yields a posterior density

Π(M|d) ∼
e−(d−F(m))T Cd(σn)−1(d−F(m))/2

(2π)nd/2|Cd(σn)|1/2

e−(m−mp)T Cp(µ)−1(m−mp)/2

(2π)np/2|Cp(µ)|1/2
. (2)

Here nd is the number of measurements, and we will consider the particular case where
Cd(σn) = σ2

ndiag{σ2
i }, the covariance matrix of the total error, is assumed diagonal and

known up to the scalar σ2
n. Similarly, the unknown meta–parameters µ may appear in

Cp(µ). For normalization and model–comparison purposes, the determinant terms and
dependencies on np are important.

The first problem is which choice of prior is suitable for a particular model–layer re-
sistivity. Typical CSEM hydrocarbon applications will occur in clastic–dominated areas,
where shale abundances may be 80% or so. The model–layer resistivity will be an “effective
medium” property of a rock composite, whose (frequency) distribution will be a complex
function of rock–type abundances, the internal spatial arrangement of rock types, the in-
ternal variability within a rock type, and the effective–medium laws. In general we should
expect it to be a complex mixture distribution resulting from these factors. A rigorous
calculation is doubtless rather subjective, but we can say a few definite things: (1) it will
have a heavy right tail, resulting from the lighter abundances of low–porosity facies (2) it
is reasonable to apply a strict lower bound, computed from the Hashin-Shtrikman lower
bound on brine and shale-matrix mixtures via sensible upper-bounds on shale porosity (e.g.
50%). A typical, credible number is ρ = 0.8Ωm (log10(ρ) = −0.1). A truncated Gaussian
distribution for m = log10(ρ) can be used to cover the prior support comfortably, has both
of these required properties, and has the added advantage of analytical convenience. If
bounds are not applied, the logarithmic transform retains the advantage of guaranteeing
positive resistivities.

Spatial “smoothness” type beliefs about the model can be expressed by embedding
spatial correlation into the multivariate prior distribution for the model parameters. We
will use forms derived for the unbounded cases, and impose constraints for the bounded
case as required. A convenient form to work with is the Gaussian prior

p(m) =
1

(2π)np/2|Cp|1/2
exp(−(m − mp)

T C−1
p (m − mp)/2),

where mp is a prior mean or prejudice about the subsurface structure. It is reasonable to
suppose the prior marginal variance of any layer parameter (as imposed by the mixture
distribution approximations above) to be independent of any vertical correlation. Thus
it is simpler to specify Cp directly, rather than C−1

p , as the diagonal elements contain
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the prior marginal variances. Specifically, if there are i = 1 . . . np layer parameters mi,
whose prior marginal standard deviations are set to a common value σp, the exponential
correlation matrix Cp,ij = σ2

p exp(−α|i − j|) is a convenient possible form for Cp, with
a “lattice” correlation length 1/α. To forestall confusion, we emphasize that we will be
making inferences about an effective correlation length 1/α for the large–scale resistivity
parameters m, as estimated by CSEM data solely, and not to be confused with correlation
lengths inferred from, e.g. wireline or core data. Although the correlation length might
be argued to be an intrinsic geological property, a Bayes MAP estimate of this effective
correlation length suggests the resolution characteristics of the measuring technique used
to acquire the data.

Now Cp has a tridiagonal inverse which, for convenient comparison with other literature
using the discrepancy principle, may be written in the form

C−1
p (µ) = µ∂T ∂ + diag{W 2

p,1, W
2
p,2, W

2
p,2, . . . , W

2
p,2, W

2
p,1},

where ∂ is the np × np finite-difference derivative matrix

∂ ≡






−1 1 0 0 . . .
0 −1 1 0 . . .

. . . . . .
. . .

. . . . . .




 ,

and the correlation length 1/α is related to the “regularizing strength” µ by

α(µ) = sinh−1(
1

2µσ2
p

).

(Further connections of the inverse covariance implied by the regularizing matrix ∂ with
geostatistical ideas are drawn out in Kitanidis (1999).) Maintaining the prior standard
deviation requires that the weights Wp vary with µ also:

W 2
p,1 =

1

σ2
p(1 + e−α)

, (3)

W 2
p,2 =

1 − e−α

σ2
p(1 + e−α)

. (4)

Clearly, α and µ are alternative ways to track the exponentially correlated prior: we will
use the parameter µ henceforth as the meta–parameter. Thus, if we define Wp(µ) =
diag{W 2

p,1, W
2
p,2, W

2
p,2, . . . , W

2
p,2, W

2
p,1}, the inverse is then simply C−1

p (µ) = µ∂T ∂ + Wp(µ).

In the absence of correlation (α → ∞, or µ = 0), the Wp,i are simply related to the prior

marginal standard deviation σp by Wp,i = 1/σp. The determinant |Cp| = σ
2np
p (1−e−2α)np−1,

with the property |Cp| → 0 as α → 0, is helpful to know. The question of how to choose a
suitable prior distribution for µ is rather tricky. Fortunately, the posterior distribution for
µ is only very weakly influenced by the prior, so we use a flat prior on µ for simplicity.

The noise parameter σn is global scalar correction term for the (white) Gaussian noise
distribution, and we presume the error estimates σi in Cd(σn) = σ2

ndiag{σ2
i }, are sensible

estimates based on preliminary data analysis, e.g. 5% of the expected field amplitude,
down to some typical noise-floor for the receivers (absolute noise floors are dependent on
electronics design, possibly electrode chemistry, receiver motion, stacking and processing
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considerations etc, and are typically around 10−15V/Am2 for E fields, 10−18T/Am for B).
This absorbs both measurement and modelling errors. The additional term σn is an O(1)
correction parameter, corresponding fairly closely to the “unknown variance” parameter of
traditional Bayesian regression treatments, e.g. Gelman et al. (1995). We will take the prior
P (σn) to be flat (constant) for simplicity.

There are two possible approaches to the inference problem at this point; pure maximum–
aposteriori, or empirical Bayes. The general ideas are easier to see in the fully linear prob-
lem, which, for reasons of space, we have supplied in the supplementary material Appendix
C of Gunning (2010). This material supplies also some derivation details we skip in the
following. The first and simplest idea is a pure “maximum aposteriori” approach, setting
inferences at a global minimum of the negative log posterior of the full joint distribution
in m, µ, σn. This objective function in the optimization step may be written (dropping
nd

2 log(2π) and log |diag{σ2
i }|) as

−2 log(Π(m, µ, σn|d)) ≡ χ2 = (d − F(m))T Cd(σn)−1(d − F(m)) (5)

+nd log(σ2
n) + (m − mp)

T (µ∂T ∂ + Wp)(m − mp))

− log(|µ∂T ∂ + Wp|) +
np

2
log(2π).

Where the prior has weak influence and the degrees of freedom are few, this is a simple and
effective approach. The estimates of µ will be biased up if the data are too noisy, however,
as shown in the supplementary Appendix C (Gunning, 2010).

Since the smoothing and noise parameters are really meta–parameters in a hierarchical
construction, an approach that leads to less bias is the empirical Bayes (EB) idea (Carlin and
Louis, 2000), where meta–parameter estimates are formed by maximum likelihood estimates
of the marginal distributions of the parameters. Two recent examples are Malinverno and
Parker (2006), and Mitsuhata (2004). The derivations for the EB case are somewhat messier,
so we will show how things run for the joint maximum–aposteriori case first, and merely
summarise the EB results later.

In the joint maximum–aposteriori case, we minimize equation (5) by cyclically alter-
nating minimizations on σn, µ, and m, which is not inefficient if the three blocks are not
strongly correlated in the posterior∗. The minimisation on σn involves only the first 2 terms
and is trivially a standard ML variance estimate:

σ2
n =

(d − F(m))T C−1
d (d − F(m))

nd
.

Substituting this again into (5), and dropping some constants, yields the reduced objective

χ2
J = nd(1 + log((d − F(m))T C−1

d (d − F(m))/nd)) (6)

+(m − mp)
T (µ∂T ∂ + Wp)(m − mp))

− log(|µ∂T ∂ + Wp|).

The optimization on µ then involves only the last two terms; a problem we may write as

χ2
smooth(µ) = (m − mp)

T (µ∂T ∂ + Wp(µ))(m − mp)) − log(|µ∂T ∂ + Wp(µ)|).

∗This is a good assumption for σn and m (a well known statistical phenomenon), but probably not for µ

and m: a joint Newton scheme would be much better for the latter pair
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The determinant must be evaluated numerically in general (an O(np) operation since ∂T ∂
is tri–diagonal), and this problem can be solved using any suitable one-dimensional opti-
mization routine, e.g. Brent’s method (Press et al., 1992). We have found it prudent to
step–limit the optimum found in this phase to within a trust region centered on the current
value of µ, typically µ ± 0.5.

The final optimization in the cycle is for m. For small changes in m about a current
model m0, by linearizing the log() expression, the varying terms in (6) needed for the
optimization may be written as

χ2
m = (d − F(m))T C−1

d (d − F(m))/σ2
n + (m − mp)

T (µ∂T ∂ + Wp)(m − mp)). (7)

The Gauss-Newton step here is thus the standard Bayesian update, with the data co-
variance merely adjusted by the current noise estimate σ2

n. The full Newton update for this
optimum, with the Jacobian Jij ≡ ∂Fi/∂mj , is

m′ = (
1

σ2
n

JT CdJ + µ∂T ∂ + Wp)
−1(

1

σ2
n

JT C−1
d (d − F(m) + Jm) + (µ∂T ∂ + Wp)mp).

Another important traditional form for the Newton step ∆m ≡ m′ − m is

∆m =








1

σ2
n

JT CdJ + µ∂T ∂ + Wp

︸ ︷︷ ︸

H








−1

×

(
1

σ2
n

JT C−1
d (d − F(m)) + (µ∂T ∂ + Wp)(mp − m))

)

︸ ︷︷ ︸

−∇χ2
m

, (8)

with implied Hessian H and gradient ∇χ2
m.

For the cases where no estimation of σn is desired, the same formalism applies, excepting
the optimization on σn is omitted and σn → 1 everywhere else. Similarly, if no optimization
on µ is performed, µ is simply fixed at the desired value in all equations.

For the EB case, the derivations follow a similar spirit to supplementary Appendix C
in Gunning (2010), save that one uses local linearization and the Laplace approximation in
estimating the marginal distribution (marginal) for µ. The mode of the marginal for σn is
straightforward, yielding the classical unbiased estimate

σ2
n =

(d − F(m))T C−1
d (d − F(m))

nd − np
,

and to a good approximation the marginal Π(µ, σn|d) for µ has an additional term in the
optimization (Π(µ, σn|d) ∼ exp(−χ2

smooth(µ)/2):

χ2
smooth(µ) = (m − mp)

T (µ∂T ∂ + Wp(µ))(m − mp))

− log(|µ∂T ∂ + Wp(µ)|) + log(|
1

σ2
n

JT CdJ + µ∂T ∂ + Wp(µ)|). (9)
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Clearly, there is nothing particularly magical about the choice of the exponentially
correlated prior. We have chosen it because the inverse (the “precision matrix”) maps
closely to the sorts of structures used in regularization approaches (i.e. the connection and
differences are clear), and the determinant is simple. Other choices could be made, and
block–wise forms arising from the use of “tear–surfaces” (discontinuities in the correlation)
would also pass through the foregoing derivation simply.

Example of resolution via correlation meta–parameters: “Bayesian smoothing”

An example of how the empirical Bayes apparatus works, for fixed known noise, but un-
known correlation parameter µ, is shown in Figure 1. Synthetic data (inline |E| field at
0.25,0.75,1.25 Hz, over offsets 1-12km) for the depicted “truth case” model are generated
with varying noise levels, by adding independent Gaussian noise deviates of the required
standard deviation (e.g. 0.05|E| for 5% errors) to |E|. The uneven sampling (dropouts etc)
is inherited from a real data set “template”, but the model and data are all synthetic. The
inversion model is quite finely discretized, using layers of approximately 50m to 100m, and
the marginal priors for each layer are set at mj ∼ N(0, 1).
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Figure 1: Left: “Bayesian smoothing” MAP inversions (µ as a meta–parameter) of CSEM
data for the “truth case” model shown, for noise levels 10%,5% and 2%. Though the
termination at the optimum is not explicitly controlled by χ2

RMS ≡ [(d − F(m))T C−1
d (d −

F(m))/nd]
1/2, χ2

RMS values are typically O(1) at the optimum; in this case, 1.21,1.09, 1.02
respectively. Clearly resolution is strongly dependent on noise levels. Right: typical data
and fit at 5% noise. Note the error bars apply to |E|, not log10 |E|, despite the scales.
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Model hierarchies – Splitting methods

Another approach to resolution is to perform model–selection on a set of models of increasing
spatial resolution. Clearly, an exhaustive enumeration of a full suite of possible layer–
grids, using, say, the theory of integer partitions based on some finer underlying lattice,
will produce a huge (combinatorially large) number of possible models. These will not be
able to be computed exhaustively, so some kind of heuristic for exploring model spaces is
necessary. An obvious idea is some kind of recursive algorithm which will either adaptively
refine a very coarse model, or remove detail from a fine model, such that resolution is
created at the depths statistically justifiable from the data. These ideas are closely related
to segmentation approaches, also called the method of sieves (Evans and Stark, 2002). Some
related approaches are (Esparza and GomezTrevino, 1997) and (Hidalgo et al., 1998) , but
these are not explicitly statistical in formulation.

We rank models on the basis of the marginal model likelihood (MML), obtained by
integrating the Bayesian posterior density over the model parameters. For model k the
MML is defined as

π(k) =

∫

L(d|mk)p(mk)dmk.

The Laplace approximation for the MML (Raftery, 1996), for our CSEM problem, is

− log(π(k)) = 1
2(d − F(m))T C−1

d (d − F(m))/σ2
n + 1

2nd log(σ2
n)

+1
2(m − mp)

T (µ∂T ∂ + Wp)(m − mp))

−1
2 log(|µ∂T ∂ + Wp|) +

np

2 log(2π) + 1
2(log |H|), (10)

with all terms evaluated at the MAP point, the Hessian H as per equation (8), and the
smoothing µ = 0.

As a reference implementation, we have adopted a recursive greedy search algorithm
based on successive refinement of an initial very coarse model. The algorithm proceeds as
follows.

• Compute the MAP solution and MML for a very coarse, sufficiently deep 2 layer
model (problem of dimension np = 2). This becomes the parent model.

• loop over all layers in the parent model, split each layer into two by turns to make
“child” models, and invert for the MAP point and MML for each child model (np

models of dimension np + 1 each). Record the best solution (“favourite child”) and
best MML.

• If the best child MML is an improvement on the parent’s MML, embed the split, and
iterate the process with the best child as the new parent. If no solution is better,
terminate the algorithm on the np dimensional parent model.

In each case, default starting points for the optimization are obtained by injecting the
parent MAP parameter values into the child parameter vector in the way that preserves
the existing spatial distribution. Global inversion is also very desirable for each candidate
model, as superior solutions may not be in the basin of attraction of the starting point
inherited from a parent.
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These coarse models should require no spatial smoothing between layers, so in all the
expressions above, ∂ = 0 and the Wp will be calculated from the univariate prior variance.

Example of resolution via model–selection

A standard test problem in the CSEM literature is the “canonical model” (Constable, 2006):
a 100m thick, 100Ωm reservoir buried 1km deep in shales under deep water. An example
of the evolution of these split models for the ‘canonical’ test model is shown in Figure 2.
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Figure 2: Canonical model under splitting: dark gray=“truth case”, light gray=final split
model with minimal − log(MML) value, black=“Bayesian smoothing” MAP inversion on
fine grid for comparison.

It is clear that the reference algorithm above will arrive at relatively parsimonious mod-
els, but it is not clear that it always terminates at the simplest conceivable model. An
alternative, more expensive algorithm based in splitting and merging can achieve the latter:
an example is shown in Figure 10 later in the paper.
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OPTIMIZATION DETAILS

Projected Newton or Marquardt Methods with bound constraints

Experience shows that unconstrained inversion (very “wide” priors) often produces unphys-
ically low values of resistivity in the shallower layers. Such values may occur not only at the
final optimum, but also during the optimization phase, and also may allow the minimisation
to wander into an unwanted basin of attraction. Placing a sensible lower bound truncation
in the prior distribution cures this problem, but introduces the problem of how to efficiently
control the optimization in the presence of such bounds.

Very sophisticated modern techniques exist for general linearly constrained optimization
problem (Nocedal and Wright, 1999; Fletcher, 1987), but the full generality of these is not
required for simple bound constraints. Particularly for badly scaled problems such as the
CSEM problem we address, naive ideas can easily break the ideal quadratic convergence
of Newton–like algorithms, so some subtlety and care in implementation is required. We
have implemented both the projected Newton technique line–search described by Bertsekas
(1981) and Kelley (1987), and also a projected trust–region (Marquardt) method, adapted
from Madsen et al. (2004), with ideas at least as old as Holt and Fletcher (1979). The
implementation requires some care, so we make this available in Appendix D of Gunning
(2010).

When optima occur at parameter boundaries, the Laplace approximation for the marginal
model likelihood is certain to be less accurate, as the probability is truncated in at least one
parameter. It is difficult to estimate the correction factors necessary, but the approximation
will give at least an estimate of the order–of–magnitude of the integral.

Currently, all parameters (log10(ρ)) share the same bounds. Default bounds of −0.1 <
log10(ρ) < 4 are applied, the lower corresponding to 0.8Ω-m, a respectable lower bound for
shales based on Hashin-Shtrikman effective media theory. The bounds can be disabled or
altered if desired.

Globalisation – multiple start solutions

Virtually all the modes of inversion except either very low dimensional models or exces-
sively over–smoothed finer models will suffer from multi–modality. This is most obvious in
dependence on the initial guesses in the optimization runs, and algorithm dependence in
the solutions found (e.g. the details of the line search). Reasonably rich models with weak
smoothing usually have a significant number of local modes, some of which may be very
poor fits, but also several which may be respectable.

The best strategy for dealing with this is to use models as parsimonious as the purpose of
the study permits, and attempt to enumerate and quantify as many local modes as possible.
The code can be invoked with a suite of strategies, attempting multiple optimization passes
at each point in the code where (by default) a single local optimization is performed (in
addition to the default local–optimisation pass). A variety of strategies are conceivable; we
have implemented the following suite. a) Default (and mandatory): use a starting point
determined by the startup file. b) Try N random starts in the hypercube m̂i − 1 < mi <
m̂i + 1, where m̂ is the optima found by strategy (a). (c) Form starting points formed by
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flipping adjacent layer resistivities in the solution m̂, pairwise, at layers where a reasonable
contrast seems likely as judged by successive jumps in m̂i. The latter strategy is designed
to (hopefully) lie in different basins of attraction to the existing m̂. Some simple thought
experiments and numerical experience shows that the MAP solution for underresolved (fine-
gridded) models tend to place all the required high resistivity in a single layer, so simple
multimodality will exist in the precise location of that anomalous layer.

At the end of the mode–enumeration, the code checks the modes for duplicates using
some naive tests (e.g. Euclidean distance of MAP points less than some threshold), and
sorts the modes by marginal model likelihood (usually very closely tied to RMS misfit).
Iteration, response, and model depth–profile files are written for each mode.

A typical example of distinct multiple modes is shown in Figure 3. These have the
typical “layer–flipping” behaviour mentioned before. Another useful function of the mode–
enumeration facility is to check that the local modes occur at genuine optima of the -ve log
posterior, not simply at points where the Newton scheme could make no further progress due
to either coding errors, bad scaling, poor termination criterion, or other gremlins. Figure 3
shows a plot of the final objective function from 500 random starts of a typical problem,
where the repeatable convergence to one of 7 possible solutions is clearly evident. In this
case, one mode is clearly very superior to the others, and it is reassuring to see that it has
an ample basin of attraction.
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Figure 3: Left: Multiple local–mode MAP solution depth profiles of an 8–layer unsmoothed
problem, shown as distinct curves. Right: -Log(posterior) of a large ensemble of random
starts. Repeated convergence to particular optima is good evidence of sensible termination
criteria.
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Mode uniqueness checks

An important consideration in any “mode enumeration” strategy is to avoid the double–
counting of modes, and also understand the relation between modes. We know from simple
thought–experiments that there can be distinct optima which are separated by only weak
probability barriers in the posterior surface, and knowledge of these near-degeneracies may
clearly be useful in constructing MCMC strategies, among other reasons.

A particularly interesting question is that of how to construct the “lowest energy” path
connecting two modes. This path should look like the red “geodesic–like” path of Figure 4.
This object might form a sort of backbone along which ridges of the posterior probability

A

B

Mj

Mi

Figure 4: Optimal path connecting two modes A and B. The dots depict nodal points on a
discretized approximation to the path, used in the optimisation algorithms detailed in the
main text.

might form. One possible way to seek such paths is minimise the path integral

ΛAB =

∫ B

A
χ2(M)dl (11)

along a smooth parametrised path from MAP point MA (belonging to mode A) to a distinct
mode MAP point MB. For χ2, we would use the full Bayes -ve log posterior, equation (5),
or at least the varying pieces of it.

Algorithms to generate such paths are described in Appendix A, with some examples.
In summary our findings are this. For very many problems, we find the modes can be linked
along paths whose probability barriers are very weak relative to the sampling fluctuations
expected in the posterior. For certain near–degenerate cases, the paths correspond to sets
of layers behaving as an effective medium with strictly known upscaling laws (e.g. responses
depend only on a sum of resistivity–thickness products), but in general this is not the case.
In such cases, sampling algorithms for the model uncertainty ought to be able to visit
all the modes, and the chief challenge for such algorithms is the traversal of the twisting,
steep–sided ridges of the posterior, not jumping between isolated modes per se.

APPROACHES TO INVERSION UNCERTAINTY

It is possible, though not very natural, to ask questions about parameter uncertainty within
a regularization framework. An intriguing “all–at–once” approach is Medin et al. (2007),

16



which seeks to provide bounds on parameters subject to given “data–misfit” tolerances
(the criterion could clearly be “Bayesianized” to include prior considerations) . We entirely
agree with these authors that extreme nonlinearity in geo–electrical inverse problems makes
techniques based on local linearization (e.g. Backus–Gilbert theory) untrustworthy for these
problems. We also agree that models found by regularized solutions tell us little about
parameter uncertainty in themselves.

However, we believe the best approach to model and parameter uncertainty is an ex-
plicitly statistical approach, abandoning the language of regularization. With O’Sullivan
(1986), we emphasize that in Bayesian inversion the full posterior distribution embodies
all we can know about the model, and point estimates (e.g. “MAP” solutions) are very
imperfect as tools for making decisions.

Ideally, parameter inference from CSEM data should take into account both model
uncertainty and parameter uncertainty: an example of this in the seismic context is Gun-
ning and Glinsky (2004). In Bayesian frameworks for linear or weakly non–linear prob-
lems, within a model, typical approaches to parameter uncertainty will involve comput-
ing posterior covariance matrices from the inverse of the Hessian at MAP points. This
is very useful, efficient, and usually satisfactory. But since the nonlinearity in CSEM
is severe, the local linearization is unreliable, and methods based on sampling must be
adopted. Notwithstanding this, our implementation writes out linearized MAP posterior

covariances (C̃ ≡ H−1), correlation–coefficient matrices ({C̃ij/
√

C̃iiC̃jj}), and 1–sigma pos-

terior marginal error bars (m̂i±
√

C̃ii) for the inverted models, for comparison purposes. In
the hierarchical “Bayesian smoothing” mode, the “smoothing–free” approximate covariance
(C̃ ≡ (JT CdJ/σ2

n + σ−2
p I)−1) is used, since the smoothing is really an artificial construct.

In this section, we confine the discussion to uncertainties within models, and present
two canonical approaches to sampling. i) Markov–Chain Monte Carlo (MCMC) from the
Bayesian point of view, and ii) the frequentist parametric bootstrap method, adapted for
the Bayesian framework we use.

The Markov–Chain Monte Carlo approach is the method of choice for fully Bayesian
frameworks where little can be done analytically, and fast forward model evaluations are
possible. It is the standard tool of choice for Bayesian statistical work. The validity of
the MCMC algorithm rests critically on constructing a “model proposal” scheme which can
visit all the parameter space efficiently, and satisfies the requirements for reversibility. This
is a very stringent requirement, and greatly restricts the ability of these samplers to use
“optimisation–related” information to construct proposals. For posterior distributions that
are very poorly scaled, distorted in shape, and modestly sharp in some dimensions, this
makes the construction of good schemes very difficult. Liu (2003) is a good survey of the
technique. The section MCMC below has the details of our implementation for 1D CSEM.

Frequentist statisticians are more used to dealing with uncertainty estimation using va-
rieties of the bootstrap or jackknife (Efron and Tibshirani, 1994). These rely on performing
separate parameter inferences for each member of a suite of “synthetic data sets” (generated
from an initial best–fit model using the actual data), so the use of optimisation apparatus
is explicitly used for each bootstrap sample. This has certain advantages for the CSEM
problem, as the optimisation machinery in place is then able to help find good samples
in the domain of support of the posterior. Bootstrap theory has foundations and justifi-
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cations related to large n (number of data) expansions of the posterior (Hall, 1992; Efron
and Tibshirani, 1994), and can be expected to closely resemble Bayesian posteriors if the
prior has weak influence (i.e. the likelihood swamps it). This latter is only partially true of
the CSEM problem, especially in somewhat over–parametrised models where the Bayesian
prior is essential for stabilising the posterior. In the section Bayesian Parametric Bootstrap
below, and Appendix B, we show that the parametric bootstrap can be used in a Bayesian
framework by treating the prior information as “effective observations” on the parameters.
Clearly the number of “extra” data points generated in this way does not grow as we acquire
more data, and if the forward model has implicit degeneracies (i.e. near rank-deficiency in
the sensitivity), the “large n” assumptions of bootstrap are not strictly valid. Nonetheless,
bootstrap theory has been shown to be remarkably effective even for few data, as some of
the test examples show, and the ability to straightforwardly apply optimization techniques
helps greatly in visiting a greater spread of parameter space.

MCMC

The code incorporates a tentative implementation of an MCMC sampler suitable for sam-
pling from low–dimensional models. It relies heavily on information collected during the op-
timisation and mode enumeration passes. For convenience, suppose the mode–enumeration
has found a set of local optima i = 1 . . . Nm, which we characterise by their MAP points m̂i,
local approximate covariance (inverse Hessian) Ĉi and estimated relative probability πN (i)
(we add the subscript N to indicate the π(i) are normalised so

∑

i πN (i) = 1. These are
sorted by πN (i), so mode 1 is estimated to be most likely. The algorithm below is robust to
the enumeration missing a mode, as long as it is reasonable accessible by the random walk
proposals.

A Markov chain is a sequence of samples mj whose overall equilibrium distribution
approaches that of the Bayesian posterior Π(m|y). All that is required is a proposal kernel
q(m′|m) for visiting a new state m′ from an existing state m, which can potentially visit
the entire support of the distribution (irreducibility), and a probability for accepting or
rejecting a proposal. The art in MCMC implementation consists in constructing proposal
schemes that rapidly move across the support of the posterior.

In fixed dimensions, the well–known Metropolis scheme uses an acceptance probability

α = min(1,
Π(m′|y)q(m|m′)

Π(m|y)q(m′|m)
,

where Π(m′|y) is the posterior density of model m, given data y, up to a fixed normalization
constant. Models outside the bound constraints are assigned an extremely low probability.

At present, the sampler is implemented for known noise σn, and zero smoothing, so
we use equation (2) with Cp a diagonal matrix populated from the user–specified prior
variances.

The proposal kernel q is a random mixture of three types of proposal.

• Random jumps of form q(m′|m) ∼ N(m, ξĈ1), where Ĉ is the linearised posterior
covariance (inverse Hessian) of the most likely mode, and ξ is a scaling parameter
tuned such that the final acceptance rate from this kernel is about 0.25.
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• “Layer–flip” type moves seeking to exploit the possibility of nearly constant resistivity–
thickness product between adjacent layers. The scheme below is a random jump in
mj followed by a conditional random jump in mj+1, designed so as to nearly conserve
this property between layers j and j + 1. Layers have thickness Tj , subsea depth dj .
At initialization, a set of candidate layers SLF suitable for possible layer flipping is
assembled. Currently, adjacent layers with Tj < dj/4 form this set. If a layer–flip is
chosen, the algorithm is:

– Chosen j ∈ SLF at random. All parameters but mj , mj+1 will remain the same.
Initialize JH = ∞.

– Propose m′
j = mj + δmj , where δmj ∼ N(0, f2

A)

– If m′
j ≥ mL,j , compute ξ = (Tj10mj + Tj+110mj+1 − Tj10m′

j )/Tj+1.
If (ξ > 0), propose m′

j+1 = log10(ξ) + δmj+1, where δmj+1 ∼ N(0, f2
B) and

compute R = (Tj10m′
j + Tj+110m′

j+1 − Tj10mj )/Tj+1.
If R > 0, compute JH = (δm2

j+1 − ((log10(R) − mj+1)/fB)2).

– Accept the proposal with probability min(1, Π(m′)
Π(m) e−JH ) The jump sizes fA, fB

are tunable parameters, typically fA ≈ 0.4, fB ≈ 0.02.

• ‘Mode jumps’ from mode i into mode j of form

m′ = m + m̂j − m̂i.

This proposal is made with probability πN (j), so q(m′|m) = πN (j), and the Metropolis
equation requires the piece q(m|m′)/q(m′|m) = πN (i)/πN (j). This kernel is designed
on the assumption that the random-walk part of the sampler will stay ‘close’ to the
mode MAP point relative to the separation between modes, that modes will have a
similar ‘shape’ (local covariance), and that no tunnelling between modes will occur
(so the ‘targeted’ offset m̂i − m̂j is useful). The mode weights πN (j) are used in the
proposal so little time is spent constructing a jump to a mode that is very likely to
be rejected. None of the assumptions just outlined are very safe bets for the CSEM
problem, unfortunately.

Chen et al. (2007) express enthusiasm for the slice sampler of Neal (2003). Our im-
pression is that the component–wise slice sampler has significant difficulties with highly
correlated posteriors (as would any component–wise method), and it is not clear to us how
to efficiently implement a multi–component version for this problem. Some experiments
with hybrid molecular–dynamics samplers (see Ch.9, Liu (2003)) have produced indiffer-
ent results. The fundamental difficulty is that, for many problems, the posterior is very
badly scaled (narrow in shallow parameters, wide in deep ones), and highly nonlinear for
degenerate parameters: “steep–sided curving valley(s)” in parameter space. The scaled
random–walk proposal works well for modestly poorly scaled problems, but only those that
do not twist or snake. The fundamental difficulty is very strong but twisting parameter
correlations, and virtually all MCMC techniques we know of have difficulties in this regime.

Bayesian Parametric Bootstrap (or Monte Carlo)

An alternative method for assessing inversion uncertainty is a older technique called Monte
Carlo simulation, referred to in more modern literature as the parametric bootstrap. For
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overdetermined, stable inverse problems without any kind of Bayesian prior, the usual pro-
cedure is to estimate a maximum–likelihood model m̂ by, say non-linear regression (i.e.
minimise χ2

misfit = (y−f(m))T C−1
d ((y−f(m))), estimate the parameters of the noise distri-

bution of ǫ = (y−f(m)) (e.g. a noise variance), then simulate an ensemble of bootstrapped
“synthetic” data sets yi = f(m̂) + ǫi, with ǫi new samples from the noise distribution. A
matching ensemble of bootstrapped parameter estimates m̂i are then formed by nonlinear re-
gressions of each resampled data set, i.e. minimising χ2

i,misfit = (yi−f(m))T C−1
d ((yi−f(m))).

The statistics of the ensemble m̂i are then used for interval estimates etc.

Appendix B reviews the known result from linear theory that if the noise model is correct
and the noise variance unbiased, the mean bootstrap model is an unbiased estimator of the
mean (in fact the ordinary least squares estimate), and the ensemble average residual sum of
squares (RSS) is χ2

n−p distributed and has mean n−p. This result is what motivates suitable
“target misfit” values in discrepancy principle approaches. Another important result is that
the distribution of the RSS of the bootstrap residuals with respect to the original data set
is χ2

p, but offset to the right by the regression misfit n− p. This suggests the range of data
misfits that should be encountered in the posterior distribution.

In Bayesian frameworks, the objective function (log–posterior) above is typically aug-
mented with terms from the prior, usually to something like

χ2 = (y − f(m))T C−1
d (y − f(m)) + (m − mp)

T C−1
p (m − mp).

We show in Appendix B that the usual parametric bootstrap arrangement can be modified
to work for this case, simply by treating the prior as additional “data”. The upshot is that
bootstrap model samples are then found by an optimization problem with both resampled
synthetic data and resampled prior means mp. The distributional statement above also
hold, with the number of data n now taken as n + p. In short, a Bayes MAP model m̂ is
found using the real data y, and bootstrap samples are found by optimization with synthetic
data drawn from yi ∼ N(f(m̂), Cd), and a synthetic prior from mp,i ∼ N(m̂, Cp).

This technique has appeared in the hydrology/petroleum “history–matching’ literature
under the rubric “randomized maximum likelihood” (Kitanidis, 1995; Oliver et al., 1996).
Since it belongs so clearly to the family of bootstrap methods (the fundamental idea is that
the data are “resampled”), and the bootstrap literature is by comparison so vast, we think
the name “Bayesian parametric bootstrap” or similar is much preferable.

From the material and example shown in Appendix B, it emerges that the recentering
of the prior mean, which is required in the fully linear case to achieve rigorous, unbiased
sampling, has a strong effect in the nonlinear and multimodal case, effectively oversampling
the posterior in the region close to the MAP estimate m̂. To overcome this effect, at the
price of some weak bias, we advocate a non–recentered version, using the same recipe as
above, but drawing bootstrap prior means from mp,i ∼ N(m̄, Cp). The example below
illustrates how this helps for a CSEM problem with well understood ambiguities.

Example: CSEM split–canonical model of underresolved layers

Here we examine parameter uncertainties using a test case we like to call the “split” canoni-
cal model: a 1km overburden shale (m1), then two 50m reservoir layers (m2, m3), and shale
underburden m4. “Truth case” data are synthetically generated with the shale background
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1Ωm (m1 = m4 = 0) and the reservoirs 100Ωm (m2 = m3 = 2). Since the reservoirs are thin
relative to natural resolution, we expect the CSEM data to resolve only the total resistivity
of the two reservoir layers, but there may be subtle depths preferences.

Samples drawn using the re–centered bootstrap are shown in Figure. 5. The spread of
models is fairly wide, but there does appear to be a concentration of the anomaly in the
deeper layer, parameter m3. This requires a little explanation. Firstly, in the Monte Carlo
experiment where we generate synthetic data from the standard 3–layer canonical model
with Gaussian noise, and invert for bootstrap MAP split–canonical (4–layer) models using
globalised mode–searching, about 75% of the time the “most–likely mode” places all the
anomaly in the deeper thin layer †, so the layers are obviously thick enough to break the
symmetry modestly. Secondly, the particular data used for the “truth” case produced a
MAP solution m̂ ≈ (0.9, 2.3), so the recentered bootstrap samples are consequently more
concentrated in this region. The weak preference for the deep layer in the Monte Carlo
experiment is of no great significance, but once the re–centered bootstrap has been fired
off with a MAP solution in a particular part of parameter space, bootstrap realisations will
clearly be more sharply concentrated in that region than is desirable.

The non–recentered bootstrap output is shown in Figure 6. Here there is a much
better symmetry in where the anomaly is placed, but smoother models (m2 ≈ m3) are
under–represented. This under–representation is caused by the modestly low probability
of drawing models from the prior distribution close to this “knee” point in the maximum–
likelihood surface, since the MAP solution found by the bootstrap will be, roughly speaking,
the closest point on the maximum–likelihood surface to the sample prior–mean for the
realisation. Figure 7 shows the comparable output using MCMC (with heavily decimated
sampling output), showing heavier support in the corners of the distribution and also for
smoother models.
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Figure 5: Left: joint samples of m2, m3 from re–centered parametric bootstrap on the split–
reservoir canonical model. Middle and right: histograms of m3 and m2 from the samples,
respectively. For discussion on asymmetry see main text.

For strongly non-linear models, empirical distributions produced by bootstrapping can-
not be expected to yield the same results as procedures that correctly sample from the

†The bootstrap modes are also very well separated, focused clusters at (m2, m3) ≈ (0.4, 2.5) and (2.5, 0.4),
so we can expect that, for any data set, the MAP model m̂ will be near either of these values.
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Figure 7: Left: joint samples of m2, m3 from MCMC sampling on the split–reservoir canon-
ical model. Middle and right: histograms of m3 and m2 from the samples, respectively.

Bayesian posterior, such as MCMC. The theory is strong for the linear case, but the va-
lidity of the bootstrap procedure depends on being in an asymptotic regime with a large
data–to–parameters ratio and a very focused (compact) likelihood, which means the lin-
ear approximation is respectably valid over the support of the posterior. The first example
above represents a case where simply acquiring more data will not focus the posterior better:
the model is intrinsically unresolvable, and only the uncertainty of the “effective medium”
formed by m1 and m2 is reduced with more data.

Our recommendation at present is that the “non–recentered” bootstrap be used, as it
seems less likely to miss significant probability mass away from the mode belonging to the
MAP solution m̂ used as the basis for the bootstrap. Since, in the CSEM case at present,
the prior means are nearly always less than the MAP values, any biases are likely to reduce
inferred resistivity values, which is a conservative tendency.
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It is fairly likely that there exist adapted bootstrap techniques for multimodal target
distributions, and that a good resampling scheme for multivariate Gaussian mixtures can
be constructed. This requires further research.

EXAMPLE PROBLEMS

Thickness wedge model

Here we invert a known truth case model, constructed as a resistive wedge buried 1km deep
in shale, in 1km of seawater, and extending from 10 to 450m in thickness; see Figure 8(a).
The wedge is presumed to be very ‘gradual’, so the 1D assumption is not violated: the
wedge geometry is chosen specifically to illustrate resolution aspects. The underburden is
also shale. The shale background is 1Ωm, reservoir 100Ωm, and the data set is inline |E|
measurements at frequencies f = .25, .5, .75, 1, 1.25, 1.5, 2Hz, for offsets at 1km to 15km, on
500m spacings. Noise levels are taken as 5%, with a noise floor of 2.10−16V/Am2.

Figure 8(b) and (c) show MAP inversion images produced using“Bayesian smoothing”
on two grids: (1) a regular 50m grid, and (2) a logarithmic grid (layer thicknesses increasing
geometrically with depth). Both styles fit the data satisfactorily, so the inferred image is
largely a function of the grid construction. Figure 8(d) is a plot of the MAP inverted
reservoir thickness and resistivity–thickness (RTP) product, with error bars, based on a
parametric study of a 3 layer model, as follows. For low–dimensional models, the marginal
model likelihood (MML) is a useful tool for examining model uncertainty involving depth
and thickness of certain target layers. The code can be used to generate a “model–study”
suite of inversions over a user–specified range of specified layer thicknesses in an arbitrary
hypercube. The MAP model belonging to the maximum MML model chosen from this suite
of models is what we describe as a “MML–based inversion”. The MML outputs from this
model study are also used to construct thickness and depth uncertainties for target layers.
Discrete summations of the model probabilities (∼ e-MML) over thicknesses/parameters
not of interest is used to construct approximate marginal distributions for parameters of
interest. Figure 8(d) is such an inversion result for the wedge model, using a parametric
“model–study” of the reservoir layer top–depth and thickness.

Figure 9 shows how the MML varies as the depth and thickness of a single–layer
reservoir vary at location CMP5, where the “truth case” model was 135m thick (1000m
deep). Thicker models have a slight tendency to image shallower. Though we do not show
the details in the interests of brevity, under the Monte Carlo experiment of resampling
the “synthetic data” and reconstructing the marginals each time via the parametric model
study, the MAP estimate of depth and thickness can be shown to have low bias.

“Bird” model

This case is a surrogate for some field data, with subsurface target profiles approximating
that of interest, and field data generated synthetically by adding independent Gaussian
deviates to the “truth case” data. The data sampling inherits some uneven spacing from
the CMP processing on actual field data, and also the somewhat arbitrary extension of
the 0.75Hz data near the noise floor. Here the error bars are 5% of |E|, thresholded at
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Figure 8: (a) Truth case wedge model: 100Ωm reservoir over 1Ωm shale background. (b)
MAP inversion image using Bayesian smoothing on a regular 50m grid (c) MAP inversion
image using Bayesian smoothing on a logarithmic grid (d) MML–based 3-layer inversions for
depth, thickness and resistivity, showing marginal-distribution 95% error–bars for thickness,
and resistivity–thickness (RTP) product. Clearly the RTP is much better identified by the
data than thicknesses or resistivities.

2.10−16V/Am2. There are frequencies 0.25, 0.75, and 1.25 Hz, the data is |E| inline, from
1.2–12km. The true” model, data, and two styles of inversion are shown in Figure 10.
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Figure 9: Left: Contour plot of marginal model likelihood of 3 layer model fit to CMP 5
data in wedge model, as a function of reservoir depth and thickness. Contours are at unit
spacings of log10(MML), so 3 contours is about the conceivable span of model support in the
data. Centre and right are the marginal distributions of thickness and depth of the reservoir
layer associated with the MML measure, shown with the original “truth case” model values
from which the data were generated, and also MAP estimates of parameters. Note that no
conclusions about bias may be drawn from these plots, as the marginal distributions have
considerable stochastic uncertainty under resampling of the data.

Inversions have been run with both Bayesian–smoothing and Bayesian model–selection
styles, and both have similar “opinions’ on the achievable resolution, and detect the two
main anomalous (resistive) layers aside from basement. Some variation in the thickness
of the final “GAP” lower–resistivity segment is observed (see Figure 10), but parametric
variation of this thickness shows that it is very poorly resolved by the data (the MML shows
support over about 1km of thickness).

To examine inversion uncertainty, an unsmoothed inversion based on an p = 18 layer
logarithmic grid was run, with model priors set at N(0, 1), and noise–variance σn an addi-
tional unknown. This inversions has modest uncertainty about which layer to place the two
anomalies in, and the marginal posterior distributions in the anomalous layers are clearly
multimodal. A typical example is shown in Figure 11.

This model is an interesting comparative test case for the posterior sampling techniques.
We generate large bootstrap and MCMC ensembles, and compute from these samples the
P16, P50 and P84 quantiles (mean ± one std deviation for Gaussian deviates) of each layer
parameter mi. These quantiles and the “truth case” model are shown in Figure 12 for both
styles of calculation. Neither method seems statistically anomalous in terms of mispredicting
the actual model, but in general the bootstrapping interval estimates are a little wider, as
suspected from the simple calculation for the split canonical model. Either method is
very much preferable to linearised error analysis (using local mode Hessians): these are
not shown. The MCMC calculation is at least 10 times the expense of the bootstrapping
run in this case, as slow mixing is a controlling factor. The correlation test procedures of
Raftery and Lewis (1996) have been used to estimate the adequacy of the final ensemble.
The tendency of bootstrapping to undersample the smoother models makes certain bimodal
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inversions for three styles of “resolution–detecting” inversion (Bayesian–smoothing, splitting
and split/merge). All three approaches fit the data at approximately χ2

RMS = 0.9.

distributions more accentuated, and hence some of the P50 quantiles are more volatile.

Another test of the sanity of the sampling procedures is statistical plots of the sample
-log(posterior) distribution, relative to what might be expected from linear theory. From
equation B-7, Appendix B, we expect the sampling distribution to “resemble” an offset χ2

p

distribution if the model were nearly linear. For the nonlinear case, all bets are off, but
we should expect a modest concurrence, and in particular we should expect an alternative
scheme to MCMC to agree closely on this issue. See Figure 13.

One can conclude from this exercise that both sampling methods are good at generating
plausible models (i.e. all fit the data within the “expected” variation), but the bootstrap
models are more widely variable, i.e. tend to concentrate an undue fraction of the resistive
anomaly in single layers. The bootstrap technique is very good at generating independent
samples: even given the price of optimization for each sample, the overall optimization cost
(say O(100) forward runs with sensitivity) is still less than the cost of progressing to a
decorrelated state in the MCMC chain. However, the bootstrap does not visit the more
remote portions of the posterior as well as MCMC and is overall a mildly biased sampler
for this seriously nonlinear problem.

SOFTWARE

The open–source DeliveryCSEM code implementing these ideas is a companion software
to the Delivery software used for seismic AVO inversion (Gunning and Glinsky, 2004). It
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Figure 11: “Bird” model unsmoothed inversion uncertainty. Left: cross–scatterplots of
bootstrap sample models in layers 13,14,15 and 16, where the deeper anomaly lies. Inset:
grayscale model depictions of the model parameters in depth, for 100 “realisations” from
the posterior using bootstrapping. In these samples, the anomaly prefers to reside solely in
one of 2 or 3 layers over a “background”.

is released under a GPL–style licence into the public domain, and may obtained at the
CSIRO website (Gunning, 2003). The bulk of the code is java, but uses the public domain
Scripps forward engines in fortran(DIPOLE1D (Key, 2009), also seafloor.f and dependen-
cies(Constable et al., 1987)), called through JNI. Test examples and usage documents etc
are to found at the website.
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CONCLUSIONS

We have presented two Bayesian approaches to both resolution inference and uncertainty
in CSEM inversion problems. Resolution can be inferred by either hierarchical models with
free parameters for correlation lengths (“Bayesian smoothing”), or model–choice frameworks
applied to variable resolution spatial models (“Bayesian splitting/merging”). Globalised
optimization with bound constraints is an essential workhorse for either method. The
smoothing methods tend to be faster, but the final models are not as parsimonious. Both
methods offer a coherent alternative to regularization approaches, with more explicit control
of the prior distribution, and a more intimate relationship to the large statistical literature
on model inference using maximum likelihood or empirical Bayes methods.

Local linearization approaches to model uncertainty based on covariance matrices at
modes are of very limited use, and usually chronically underestimate uncertainty for models
with multimodal or heavily skewed posterior marginal distributions. A reasonably efficient
technique based on a Bayesianized version of the parametric bootstrap is much better, but
likely to modestly overestimate uncertainties. Full MCMC sampling is possible for these
problems, but very expensive compared to either of the preceding techniques.

Software for performing these inversions is made available under an open–source licence
agreement, with reference implementations of all the main ideas described in this paper.
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APPENDIX A

ALGORITHMS FOR FINDING MODE CONNECTIONS

One possible approaches to finding a locally minimum path for the integral (11) is by
discretizing the integral using some quadrature scheme. In the following examples, neither
free–noise or smoothing are used, so it is sufficient to use the objective (with Cp diagonal)

−2 log(Π(m|d)) ≡ χ2 = (d − F(m))T C−1
d (d − F(m)) + (m − mp)

T C−1
p (m − mp)).

A very simple “midpoint” Euler scheme for (11) is

ΛAB ≈
i=N+1∑

i=0

χ2(Mi) + χ2(Mi+1)

2
||Mi+1 − Mi||, (A-1)

where M0 = MA, MN+1 = MB, and M1,M2, . . . ,MN are path “nodes” fairly evenly
distributed along the path connecting A and B. We then minimise the sum for the joint
parameters M = {M1,M2, . . . ,MN} using standard optimization techniques. Start with
an initial configuration of points Mi evenly distributed along the straight line connecting
A and B. Efficient optimisation will require, at least, ∇MΛAB. Since the gradient ∇Mi

χ2

at the ith path–node is already coded and available, the bulk of the work is done. For
completeness, the full joint gradient, in components, is

(∇ΛAB)ij =
N∑

i=1

{∇2
χ(Mi)}j(∆Mi + ∆Mi−1)

+
N+1∑

i=1

(χ2(Mi−1) + χ2(Mi))
Mij − Mi−1,j

∆Mi−1

−
N∑

i=0

(χ2(Mi+1) + χ2(Mi))
Mi+1,j − Mi,j

∆Mi
. (A-2)

Here, ∆Mi = ||Mi+1 −Mi|| is the forward–difference path–segment length. With function
and gradient now readily computable, the optimisation can now proceed using standard
efficient methods. At present, we use a BFGS (variable metric) scheme (Nocedal and Wright,
1999), based on UNCMIN (Koontz and Weiss, 1982; Verrill, 2005). A simple example with
known degeneracy is shown in Figure 14.

It is helpful to introduce apparatus to ensure the node–points in the discrete approx-
imation to the path–integral remain equispaced. We define the segment lengths ∆Mi =
||Mi+1 − Mi||, the mean segment length

m̄S =
1

N + 1

N∑

i=0

||∆Mi||,

and the additional penalty term to ΛAB

Λ∗
AB = A

N∑

i=0

(||Mi+1 − Mi|| − m̄S)2,
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Figure 14: Evolution of “mode-linking” path under optimization, for the simple experiment
of the ‘split–canonical model’, where the 100m resistive layer (buried 1km deep) of the
canonical model is replaced by two 50m layers (parameters m2, m3). Two modes can be
found by the “layer–flipping” strategy of the global optimizer, corresponding (roughly) to
placing the resistive anomaly in each then layer solely. Left inset: the log10(ρ) parameters
of each are plotted as the path evolves. The optimal path will be close to that describing a
conserved resistivity times thickness sum over the two layers. Right inset: χ2 cross–sections
of the posterior surface as the optimal–path evolves. Clearly the early paths are extremely
improbable ways to connect models.

whose gradient has components

(∇Λ∗
AB)ij = 2A((Mij − Mi+1,j)(1 − m̄S/∆Mi) − (Mi−1,j − Mi,j)(1 − m̄S/∆Mi−1)).

A is chosen as a suitable scaling constant (e.g. A = (N + 1)2/||MA − MB||
2). Local

minimisation of ΛAB + Λ∗
AB will then generate the maximum probability local path, with

equi-spaced points. Note that since Λ∗
AB penalises only the “segment–length variance”, it

should not compete with the principal term we wish to minimise.

It is also possible to formulate the problem using Euler–Lagrange equations for the
minimum path, which may be solved by, e.g. shooting. Experiments with the BFGS imple-
mentation scheme above indicate that the number of outer iterations required to stabilise
(around 50) is likely to be comparable to the number of forward shoots likely to be needed
in any Newton–like shooting scheme. A Runge–Kutta or similar scheme for the latter is
likely to require about the same amount of work (e.g. a function and a gradient evaluated
about every m̄S in space), so overall, the computational costs of the two ideas are probable
comparable.

More complex example. Here we consider an 18–layer logarithmic–gridded model with
n = 138 data for inline |E|. The code is run in naive style, with no meta–smoothing or noise
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parameters, so M = m. Multi-start optimization is enabled, using layer–flipping, and the
code ends up collecting 8 modes. Figure 15 shows a scatterplot of the path linking modes
1 and 3, for layers 4, 5, 6, 12, 13, 14. The inset “morph” figure shows how the model evolves
from model 1 into model 3 along the path. The layers chosen for the scatterplot are those
undergoing significant changes.
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Figure 15: Scatterplot along “mode-linking” path between two endpoint–modes. The inset
shows grayscale morphing of mode A into mode B along this path, with the exchange of
resistivity quite obvious (light shades = resistive). Crossplots for the interesting layers
4, 5, 6, 12, 13, 14 (red arrows) are shown.

A question of great importance is whether the modes are “statistically interconnected”
at the level of noise specified by the inversion. A rough guess at this can be inferred
by assigning the most–likely mode MAP point as the offset in an offset χ2

p distribution
(see the regression discussion in Appendix B, and equation (B-7)). Random samples from
the posterior should spread out with χ2 values no higher than the support of the offset
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χ2
p distribution. If this latter comfortably covers the probability barriers separating modes,

then we may say the modes are “statistically connectable”. The modes found in this example
easily satisfy this condition, as shown in Figure 16.

It is important to point out that these “connecting links” are not trivial entities in
general. They do not arise in the general case from straight–line interpolation of mode
points in either (transformed) log(ρ) space or the untransformed space of resistivities. Such
straight line trajectories usually encounter enormous probability barriers caused by serious
data misfits.

0 5 10 15 20 25 30 35
60

70

80

90

100

node indx (i=0...31)

−
lo

g
(P

o
s
te

ri
o
r)

-log(Posterior) plotted along linking paths between

all pairs of modes

p
Rough envelope of expected sampling distribution for   χ21

2
_

Figure 16: Plots of the -ve log–posterior (omitting constant terms) along the 8 × 7/2 = 28
possible links among 8 different modes, along the minimum integral path. On the left is a
profile of the associated approximate offset–χ2

p sampling distribution attached to the most
likely mode. All these interconnecting paths appear reasonably accessible to the sampler.
Note that an ≈ 20% correction to the noise level has been used to adjust the vertical scale.

APPENDIX B

CLASSICAL REGRESSION RESULTS, BOOTSTRAP, AND

BAYESIANIZED BOOTSTRAP

Here we wish to motivate the Bayesian parametric bootstrap by revisiting some known
results from classical linear regression and bootstrap theory.
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Suppose that, in truth, the n data are generated by a linear model in p parameters:

yu = Xu.m + ǫu

where Xu is n × p, the noise ǫu ∼ N(0, Cd), and usually Cd is a diagonal matrix of noise
variances. The suffix u denotes “unscaled” variables. The least–squares estimate of m is

m̂ = (XT
u C−1

d Xu)−1XT
u C−1

d yu,

from which the “predicted” data are

ŷu = Xu.m̂ = Xu(XT
u C−1

d Xu)−1XT
u C−1

d yu.

For the algebra that follows, it is most simple to think in terms of scaled data y ≡ C
−1/2
d yu,

a scaled design matrix X ≡ C
−1/2
d Xu, and standard normal noise ǫ ≡ C

−1/2
d ǫu ∼ N(0, I),

in terms of which the formulae read

m̂ = (XT X)−1XT y,

ŷ = X(XT X)−1XT y.

Here, the overall coefficient matrix Q = X(XT X)−1XT is known as a “hat” matrix (it
“puts the hat” on y). Q has some important properties. It is symmetric and idempotent,
since Q2 = Q, so has eigenvalues 1 or 0, and also has the same rank as X, i.e. possessing p
eigenvalues 1, the remainder 0. It therefore follows that rank(I − Q) = n − p, which is of
use in the below. Another standard result we need is that if z ∼ N(0, I), and A is a fixed
symmetric idempotent matrix of rank k, then zT Az is distributed as χ2

k, which has mean
k.

We are interested in the normalised residuals

e = C
−1/2
d (yu − ŷu) = y − ŷ

= (I − Q)y. (B-1)

These have expectation 〈e〉 = 0 if the model is true (since (I−Q)X = 0). Another important
quantity is the residual–sum–of squares χ2

RSS = eT e, with expectation

〈χ2
RSS〉 = 〈eT e〉 = 〈yT (I − Q)T (I − Q)y〉

= 〈ǫT (I − Q)ǫ〉

= n − p (B-2)

after a few lines of algebra. Clearly, χ2
RSS is distributed as χ2 with n−p degrees of freedom. It

follows, in connection with the “discrepancy” principle used in the OCCAM style inversions,

that if the noise estimates are correct and Gaussian, the “target value” of χ2
RMS =

√

eT e/n
ought to be

χ2
RMS =

√

(n − p)/n. (B-3)

which might be, typically, around 0.9. See also the discussions in Hansen (1998). Roughly,
this means we expect the regression to fit within n−p “standard predictive errors”. (Hansen
has also a discussion of how setting χ2 = 1 tends to produce oversmoothing.) In the
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thought–experiment of making a very rich model with p → n, we get χ2
RMS → 0 which is a

standard symptom of complete overfitting.

Bootstrap. A synthetic bootstrap data set for the linear problem can then be sampled
as

yu,i = Xum̂ + ǫu,i,

or equivalently
yi = Xm̂ + ǫi.

The LS bootstrap model m̂i estimated from this sample is then

m̂i = (XT X)−1XT yi = m̂ + (XT X)−1Xǫi,

which is obviously unbiased (〈m̂i〉ǫ = m̂). The predictive accuracy of this sample model
with respect to the original data set is of interest. Consider the predictive residuals

ei = y − Xm̂i

= (I − Q)y + Qǫi. (B-4)

There are two kinds of ensemble distributions that are of interest here:

• The distribution of ei formed by sampling over both the data set y and the bootstrap
variables ǫi, which will denote with y, ǫ subscripts. Since these are distinct spaces, it
is then trivial to show that 〈ei〉y,ǫ = 0 and that the bootstrap prediction residual sum
of squares eT

i ei ∼
y,ǫ

χ2
n i.e. 〈eT

i ei〉y,ǫ = n.

• The distribution of eT
i .ei formed over the bootstrap samples only, i.e. for a given,

fixed y. This is what is actually handled in practice, and identical to the negative log-
posterior term in a MCMC approach. We use the eigendecomposition Q = V T IpV ,
where V is orthogonal, Ip is a diagonal matrix of p leading zeros, and so

ei = (I − Q)y + Qǫi

= V T ((I − Ip)V y + IpV ǫi)

= V T ((I − Ip)V y + Ipǫ
′
i). (B-5)

where ǫ′i ≡ V ǫi is also N(0, I) (i.e. standard normal). Thus

eT
i .ei = ||(I − Ip)V y + Ipǫ

′
i||2

= ||(I − Ip)Vy||2 +
p

∑

i

ǫ
′2
i ,

= ||y − X.m̂||2 +
p

∑

i

ǫ
′2
i , (B-6)

or
eT
i .ei − ||y − X.m̂||2 ∼

ǫ
χ2

p, (B-7)

i.e. the sampling distribution of the data misfit eT
i .ei is χ2

p, but offset to the right by
the minimum misfit found in the regression. Roughly speaking, we then expect the
bootstrap “samples” of the model to generate an original–data misfit distribution χ2

i

whose mean is offset by p to the right of the “best fit” χ2 in the regression.
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In both classical and empirical Bayes methods the noise level (if uncertain, as is usually the
case) would be estimated such that ||y − X.m̂||2 = n − p, so the mean of the data misfit
eT
i .ei under both kinds of ensemble averages is n.

Bootstrap for Bayesian frameworks

For ill-conditioned problems with regularization modifications, or in Bayesian frameworks,
the data–misfit objective function (log–posterior) above is modified with terms containing
“prior” beliefs about the model mean m̄. Typically, for a non–hierarchical model, with a
Gaussian prior m ∼ N(m̄, Cp), and Gaussian likelihood, we have

χ2 = (y − f(m))T C−1
d ((y − f(m))) + (m − m̄)C−1

p (m − m̄). (B-8)

The extra term can be interpreted as “extra” data points (e.g. sec. 8.9 of Gelman et al.
(1995)) as follows. Form a new data vector Y = {y, m̄}, with observational model F =
{f(m), m} and augmented noise covariance

Cd =

(

Cd 0
0 Cp

)

.

The log–posterior can then be written as

χ2 = (Y − F (m))TC−1
d (Y − F (m)),

and the local linearization of the forward model F at any point will produce a Jacobian
that looks like

Xu =

(

J
I

)

.

Thus we can use use the known results from the previous section for maximum likelihood
theory, with an total of n + p data points, and an augmented–data vector to consider for
the residuals.

The upshot is that the “prior mean” used in each bootstrap optimization must be a
sample from the prior distribution, centered on the MAP estimate using the real data, just
as the real data are resampled with errors N(0, Cd) and centred on the MAP estimate f(m̂).
For example, suppose a MAP estimate minimising equation (B-8) is m̂. A bootstrap sample
will then be Yi ≡ {f(m̂) + ǫi, m̄i}, with ǫi ∼ N(0, Cd), m̄i ∼ N(m̂, Cp). For the linear case
F (m) = Xum, the proofs are trivial:

m̂ ≡ (XT C−1
d X + C−1

p )−1(XT C−1
d y + C−1

p m̄) (B-9)

Yi = {yi, m̄i} = {X.m̂ + ǫi, m̄i} samples (B-10)

m̂i = (XT C−1
d X + C−1

p )−1(XT C−1
d yi + C−1

p m̄i) MAP estimates

〈m̂i〉 = (XT C−1
d X + C−1

p )−1(XT C−1
d Xm̂ + C−1

p m̂)

= m̂ (B-11)

Cov(m̂i) = 〈(m̂i − m̂)(m̂i − m̂)T 〉 = (XT C−1
d X + C−1

p )−1. (B-12)

The implications of this framework for the residual sum–of–squares can now be trivially
inferred taking into account that there are now n + p “data” points and p parameters.
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Specifically, for the “best–fit” (MAP) model, we expect

χ2
data+prior = 〈(y − f(m))T C−1

d ((y − f(m))) + (m − m̄)C−1
p (m − m̄)〉 = (n + p) − p = n,

and for bootstrap samples,

χ2
data+prior = (y − f(m))T C−1

d ((y − f(m))) + (m − m̄)C−1
p (m − m̄) ∼ χ2

n+p.

In summary, the implied suggested recipe for the nonlinear CSEM problem, which we
call the recentered Bayesian bootstrap is (1) invert with the true data and actual prior
N(m̄, Cp) to get the MAP model m̂ (2) Resample with Gaussian noise of correct variance
added to the synthetic data produced by the MAP model m̂, and use a Bayesian prior
sampled from the centered Gaussian N(m̂, Cp) when inverting for the bootstrap samples.

We will see below that recentering the mean of the prior has strong implications for
multimodal models. At the risk of incurring some bias we will use also the non–recentered
Bayesian bootstrap, which is the same recipe above except that the prior samples are drawn
from the original mean N(m̄, Cp). The reasons this more defensive strategy is useful will
become clear in the simple examples below.

Simple Examples

1) Analytical toy substitute for underresolved layers

Consider the nonlinear “degenerate sum–resistivity” 2–parameter problem with n = 1 data
point y, and predictive model y = 10m1 + 10m2 , measurement error ǫ ∼ N(0, σ2), and
Gaussian prior m ∼ N(0, I)H(m1)H(m2). (H(x) is the Heaviside function, H(x) = 1,
x ≥ 0, 0 otherwise.) The model is thus confined to positive mi. The Bayesian posterior is
of form

π(m1, m2|y) ∼ exp(−(10m1 + 10m2 − y)2/2σ2) exp(−(m2
1 + m2

2)/2)H(m1)H(m2).

For example, with y = 20, σ = 1.0, the posterior is focused on an arc, and Figure 17
shows both samples and an empirical marginal PDF of m1 obtained using quadratures.
For comparison, the marginal distribution obtained using the non–recentered parametric
bootstrapping algorithm suggested above is also shown. Specifically, the latter is: sam-
ple m̄i ∼ N(0, I)H(m1)H(m2) and error ǫi ∼ N(0, σ2), then estimate bootstrap samples
mi,1, mi,2 by numerically minimising

χ2
i = −(10m1 + 10m2 − (y + ǫi))

2/2σ2 + [(m1 − m̄i,1)
2 + (m2 − m̄i,2)

2]/2, m1, m2 ≥ 0

Notice how the marginal distribution is subtly distorted, but it in general a reasonable
approximation, especially since n = 1 and bootstrapping has origins as an asymptotic
technique for large n (but remember that adding more data does not cure model–degeneracy
stemming from the physics). The most obvious effect is the lower incidence of “smooth”
solutions m1, m2 ≈ 1 compared to the true posterior: speculatively, this may widen interval
estimates when we apply parametric bootstrapping to under–resolved CSEM models. Also,
in this case, the recentered bootstrap will grossly underrepresent the frequency of large m1

values.
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C) Marginal PDF of m1 from non-recentered

                      parametric bootstrap

B) Marginal PDF of m1 from numerical integration

A) Samples from MCMC

E) Samples from bootstrap, recenteredD) Samples from non-recentered bootstrap

0.2 0.4 0.6 0.8 1 1.2 1.4
m1

m1

0.05

0.1

0.15

0.2 probability

count

0.2 0.4 0.6 0.8 1 1.2
m1

0.2

0.4

0.6

0.8

1

1.2

m
2

0.2 0.4 0.6 0.8 1 1.2

100

200

300

400

500

600

700

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

m1 m1

m
2

m
2

Figure 17: A) Joint samples of m1, m2 rigorously from MCMC. Inset B) shows the exact
marginal of m1 from numerical integration, and C) the approximate marginal of m1 from
non–recentered parametric bootstrapping. D) Samples generated by the non–recentered
bootstrap, and E) Samples from the re–centered bootstrap, where the MAP model on the
original “data” is at about (0.08, 1.27). The re–centered bootstrap models are the suite of
points on the maximum likelihood surface (yi = 10m1 +10m2) nearest to independent draws
from the re–centered prior N((0.08, 1.27), I), and clearly such an ensemble undersamples
the region with large m1 values compared to MCMC.
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APPENDIX C

SIMPLE LINEAR PROBLEM ILLUSTRATING BAYESIAN

SMOOTHING

True EM models are usually significantly nonlinear in the forward response. Here we study
a more manageable toy problem which exhibits the same general character of resolution
loss, and show how the use of a correlated Bayesian prior with additional smoothing length
interacts with the noise level in the posterior inference. We construct a linear inversion prob-
lem where the forward model F(m) = Xm, with the matrix X behaving like a smoothing
filter. For simplicity, let the model m sit on the integer lattice, so all correlation lengths
are relative to this lattice also. Further, let the prior mean mp = 0 for simplicity, with the
prior covariance Cp(λp). Let also the prior Pmeta(λp) be flat in the region of interest. For a
pure maximum likelihood approach in the joint space {m, λp}, the optimization is then for

2χ2
Bayes(m, λp) = (d − Xm)T C−1

d (d − Xm) + mT C−1
p (λp)m + log |Cp(λp)|, (C-1)

which, for fixed λp, has optimum at

m̂(λp) = (XT C−1
d X + C−1

p )−1XT C−1
d d. (C-2)

and thus reduces to a one parameter problem

2χ2
Bayes(λp) = (d − Xm̂(λp))

T C−1
d (d − Xm̂(λp)) + m̂(λp)

T C−1
p (λp)m̂(λp)

+ log |Cp(λp)|

= dT (XCp(λp)X
T + Cd)

−1d + log |Cp(λp)|, (C-3)

after some algebra. Estimation of λp by finding the minimum of this function is a procedure
we might call “MAP” estimation for meta–parameters.

It is interesting to plot this quantity 2χ2
Bayes(λp) for various toy model choices. The toy

construction used for illustrating the recovery of a “localised” or “anomaly–like” underlying
model, is:

• The lattice has np = 50 model parameters and nd = np model observations.

• X is a normalised, centered “box–car” smoothing filter with nonzero elements Xij =
ai, |i − j| ≤ 5, with the row constant ai defined from

∑

j Xij = 1.

• A truth–case model is set as a spike in the middle of the domain: mtrue = 3δ(i = np/2).

• The truth–case “data” are obtained from d = X.mtrue + ǫ, where the synthetic noise
is ǫi ∼ N(0, σ2

n,gen), with typically σn,gen = 0.05.

• The prior variance is modestly loose, with σp = 0.5 in the prior Cp,ij = σ2
p exp(−|i −

j|/λp)

• The observational error process is taken as independent normally distributed, so Cd =
diag(σ2

d). Typically we have σd = 0.03.
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In Figure 18, we show the true model (an impulse in the middle of the domain), box-car
filtered to make data, to which Gaussian noise of varying levels is added. Again, we try and
recover the model by using the hierarchical Bayesian model with exponential covariance
Cp,ij = σ2

p exp(−|i − j|/λp), estimating lambda by the minimum in the curve 2χ2
Bayes(λp).

Figure 18 shows the synthetic data sets generated using this procedure, and the estimated
models at the MAP point on the right hand sides, using varying noise levels σn. Clearly, as
the noise diminishes, the estimated correlation length λ decreases, and the inverted model
is a more aggressively deconvolved estimate. This behaviour is generic to inverse problems
treated in this way. A similar finding (not for a CSEM problem) – is presented, Bayesian
style, in Mitsuhata (2004) and, more classically, in Ory and Pratt (1995) and O’Sullivan
(1986).
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Figure 18: Bayesian–smoothing model estimation using varying noise levels and correlation
parameter λ estimated from MAP values. The impulse-like true model is box-car filtered
to make “data”, with added noise, on the left. The MAP model recovered at the optimal
(MAP–estimated) λ is overlaid on the underlying true model on the right insets.

The empirical Bayes alternative for meta-parameter estimation is to use the mode of
the marginal distribution for λ, rather than the mode in the joint parameter space {m, λ}.
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Defining the marginal distribution by Π(λ) =
∫

Π(m, λ)dm, we see from equation (C-1)
that the integral over m will be trivial, and yields

−2 log(Π(λ)) ∼ dT (XCp(λp)X
T +Cd)

−1d+log |Cp(λp)|+log |XT C−1
d X +C−1

p (λp)|, (C-4)

which is identical to the MAP solution (eqn (C-3)), except the extra term from the de-
terminant of the Hessian (log |XT C−1

d X + C−1
p (λp)|). Naturally, it is remarkably like the

marginal model likelihood expression in the splitting methods, eqn (10).

Figure 19 shows plots of the two possible curves used to estimate the meta–parameter.
Clearly the marginal method is more stable when the noise levels get high, as it is bounded
away from infinity. For smaller noise levels, the alternatives appear to converge on to the
same solution.
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Figure 19: Alternative methods for meta–parameter λ estimation: (A), minima of the MAP
point in joint parameter space {m, λ}, with m analytically removed. (B) the mode of the
marginal distribution of λ, Π(λ). For modest and small noise levels, the alternatives are
similar.
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APPENDIX D

BOUND-CONSTRAINED OPTIMIZATION

Here we present methods for simple box–constrained optimization of the model update m,
equation (7).

Take each component of m to have lower and upper bounds mL,i, mU,i. Define the
component-wise “box–projection” operator P by

P (mi) =







mi, mL,i < mi < mU,i

mL,i, mi ≤ mL,i

mU,i, mi ≥ mU,i

Recall also that the unconstrained full-Newton step can always be expressed in the form

∆m ≡ m′ − m = −H−1∇f,

where H is the current full Hessian, and ∇f the effective gradient of the function being
optimized.

Given a fixed, small constant ǫ, at the kth iteration of the algorithm, we compute ‡

ǫk = min(ǫ, |m − P (m −∇f)|),

and define an active set of constraints (lower, upper, combined) by the set Ak, with

AL
k = {i| mi − mL,i < ǫk,

∂f

∂mi
> 0} (D-1)

AU
k = {i| mU,i − mi < ǫk,

∂f

∂mi
< 0} (D-2)

Ak = AL
k ∪ AU

k (D-3)

(roughly, the components both near the boundary and driven towards it by the gradient).
Given the active set Ak, a modified Hessian HM is constructed as

HM,ij =

{

Hiiδij , i, j ∈ Ak and
Hij otherwise

with corresponding modified gradient

∇fM,i =







Hii(mi − mL,i), i ∈ AL
k

Hii(mi − mU,i), i ∈ AU
k

∇fi i /∈ Ak

‡An alternative is
ǫk = min(ǫ, {|mi − P (m −∇f)i|}).
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Line-search version

Here, we solve for the full projected Newton update

∆m = −H−1
M .∇fM .

Stability is then imposed by a a Arjimo–like backtracking search in α along the direction

m′ = P (m + α∆m),

which eventually amounts to a stable Newton–like step in the subspace of non–active con-
straints, with active constraints quadratically converging to the correct active bound in
concert. In practice, due to the poor scaling, it is very common that the projection opera-
tor P rotates the search direction substantially from the Newton direction. See Figure 20
for an example. Some subtlety in implementation is required here. Thus, although we can
guarantee that the modified Newton direction ∆m is a descent direction, i.e. ∇f.∆m < 0,
since HM is positive definite, we may well have ∇f.(m′ − m) > 0, since the projection
operator can exert a further rotation.

m1  

m2 

Newton point m’PN

P(m’PN), projected full 

Newton step

Permissible region

path of projected

backtracking

line-search

m

α=1

αmax

αmin

ε

-   f

Figure 20: Typical Projected Newton step for a badly scaled problem, for a point just before
the onset of active constraints. Note the rotation of the full Newton step by the projection
operator. The projected direction can be nearly opposite the downhill gradient.

A few more details of the backtracking are important. We define

• αmax as the maximum fractional reduction in the modified Newton step ∆m that
leaves P (m + α∆m) unchanged. Backtracking values α > αmax are pointless, as they
map to the same point, so the backtracking must start no further away than αmax.

• αmin ≡ min{|P (m′
PN )i − mi|/|m

′
PN,i − mi|}, for “free” components i, i.e. those

components where α|m′
PN,i − mi| < ǫFP, where ǫFP is about floating–point machine
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epsilon. This is roughly the “shortest backtrack” available over all components which
are not sitting on a constraint boundary: see Figure 20.

By default we start the backtrack at α = αmin, since the Newton–quadratic convergence
is not expected to set in until the active set has stabilised, where the active components
are settled on the boundary, and then αmin is not determined by these active components.
A final step–limiting (trust–region) restriction on α is to reduce it by factors of 2 until
max{|P (α∆m + m)i − mi|} < ∆mmax ≈ 0.3. This occurs typically only a few times early
on in the outer loop.

In principle, the projection operator should perform no further rotations of the Newton
direction if we restrict the backtrack to 0 < α < αmin. Full steps of αmin are expected to
be taken early as as the trajectory “crashes” into the wall. For severe cases, we may find
that ∇f.αmin∆m ≈ δ > 0, which appears like a failure to find a descent direction. The
usual reason is that large values of the gradient ∇f are pointing into active constraints, the
Newton direction is very nearly perpendicular to the gradient, and the dot–product is only
just positive from floating point error. Another possible cause, just prior to convergence, is
|m′

PN − m| becomes very small, with the same floating–point error consequence.

Typically, the poor scaling and the magic constant ǫ interact such that some significant
slowing of the convergence occurs until the set of active constraints stabilises, and Newton–
like behaviour emerges in the relevant subspace.

Trust–region version

It is possible to hybridize the active set and projections described above with a trust-region
method like the Levenberg-Marquardt algorithm, where the Newton update is modified to
a form like (HM + λLMI)∆m = −∇fM . Here λLM is the Marquardt parameter, and is
adjusted at each step to compromise best between steepest–descent and full Newton. The
general idea is to use the active set information such that, once the active set settles in,
the conventional Levenberg-Marquardt machinery will operate in the subspace of inactive
constraints, with active components carried along harmlessly.

Trust-region methods have a reputation for better navigation and greater robustness
in the remote parts of the fitting surface, where residuals will be large. The algorithm
used closely follows that of Madsen et al. (2004), except we hybridize it with the active set
detection thus:

• The active set is detected as before, and off–diagonal elements zeroed to form HM

• If the active set changes, the Marquardt parameter λLM is reset to an initial guess,
based on Gershgorin bounds of the maximum eigenvalue of the “inactive” submatrix
of H.

• No preliminary step–reduction to αmin is applied. The contracting trust region con-
trols the step length.

• Solution of the modified problem (H + λLMI)∆m = −∇fM are first projected back
into the feasible region before the usual algorithms for adjusting the Marquardt scaling
parameter are applied.
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On average the trust region method appears faster than the line–search in a majority of
cases, but this is probably dominated by the snaking character of the optimization surface
with modestly large residuals, rather than theoretical behaviours close to the final optimum.
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