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Outline
● Model selection, inference and prediction: Generalities

● Wavelet extraction 
– Model formulation
– Generic inversion/inference features for single models
– Model choice scenarios. 3 examples

● Morals & conclusions



Model selection

● Classic statistics problem
– line ? or parabola? or sextic?

● Foundations of science
– Newton or Ptolemy?

x

y

F = m a



Generalities
● Geostatistics is only one branch of multivariate statistics.

– Every result of significance can be derived from conventional 
multivariate estimation theory. A Bayesian spin is helpful.

– The rest of the world understands us better if we write things this 
way.

● As statisticians, we have the duties of 
– Model inference
– Significance testing
– Model refinement/testing
– Making predictions with error estimates



Model selection & Bayes factors
● Suppose there are k=1…N models to explain data D, with parameters 

mk

● The model has prior P(mk|k)P(k), likelihood L(D|mk,k)

● Here’s Three very useful things:

– Marginal model likelihood:

P(D|k)=∫L(D|mk ,k)P(mk|k) dmk

– Bayes factor Bij= P(D|i)/ P(D|j)

– Model probability of model k: 

P(k | D) =
P(D | k)P(k)

P(D | j)P( j)
j=1

N

∑



Predictive distributions 
● Bayesian model averaging: prediction for new y

– P(y|D) = ∑ k P(y|Mk,D) P(D|k)

● Mixture distributions
– Models/rock-types/properties
– Most helpful way to manage heavy tails

● Often:
– uncertainties within a model < uncertainty between models

y

P(y|D)



Noise estimation
● Noise  ε≡ (D-f(m))

ε= εmeas+εmodel

● Often εmodel > εmeas : we’re prepared to live with approximate models
● εmeas usually stationary. Maybe biased. Roughly known.
● εmodel often nonstationary. Correlated. Often biased. Usually 

unknown.
● We blaze away: {ε, σ2} ~ N(0, σ2)P(σ2)

● Inference of p(ε) chief issue
– p(ε) strongly coupled to model dimensionality
– Demands sensible priors in Bayesian formulation

● Simplest form adds pieces like
- Log(Π) ~ |D-f(m)|2/(2σ2)+nD log(σ2)/2

- Absolute statements of model significance no longer possible



Marginal model likelihood estimators
● Full linearisation+conjugate priors, analytical
● Quadratures. Too hard as d=dim(m) gets large
● MCMC “Harmonic mean” averages:

Unstable as Nsamples→∞

● Laplace-Metropolis approx.

● BIC asymptotics (eqn (1) does the “overfit” penalty automatically)

P(D | k) = L(D | mk,k)P(mk,k)dmk (1)∫
ˆ P (D | k) =

1
L(D | mk ,k)

Π(mk |D )(MCMC )

−1

P(D | k) ≈ e− f (m )dm ≈ (2π )d / 2 det{ ∂ 2 f
∂mi∂m j ˆ m 

}−1e− f ( ˆ m ) = (2π )d / 2 | H |1/ 2 L(D | ˆ m )P∫

−log(P(D | k)) ~ −log(L(D | ˆ m )P( ˆ m ))) +
d
2

( ˆ m )

log(nD ) + O(n−1/ 2)



Issues in prior formulation
● Lindley paradox (1957)

– Models M1 and M2, with d2 > d1. Suppose they share (nested) 
parameters m with prior 
m1 ~N(0,σ2C1)
m2 ~N({0,0},σ2 diag{C1,C2})
P(σ)~1/σ (Jeffrey’s prior)

Then the Bayes factor is (Smith & Spiegelhalter 1980)

B12 ~ |C2|1/2|X2
T X2|1/2(1+((d2-d1)/(n-d1)F)n/2

Always favours simplest model (1) as |C2| →∞
(even for proper prior on m2!)

● Setting of reasonable prior variances very important in 
comparing different dimensional models



Segmentation/Blocking algorithms
● Changepoints a classic model-

choice problem
● Maximum likelihood 

configurations for k
changepoints τj accessible from 
dynamic programming O(kn2) 
(D.M.Hawkins, Comp. Stat. & Data Analysis 
37(3), 2001)

● Uses:
– Thinning reflectivity sequence
– Optimal checkshot choices

− log(L(y,m,τ )) =
1
2

(yi − m j )
2 /σ 2 +

n
2

log(σ 2) + BIC
i=τ j −1 +1

τ j

∑
j=1

k

∑



Wavelet extraction problem

Z (depth)

t (time)

noise level

CONVOLUTION

reflections

from well logs

Systematic registration 

error ?

True-amplitude imaged seismic

wavelet



Real wavelets and effective 
wavelets: Ricker 1953 (dynamite)



Motivations
● Wavelet extraction a critical process in inversion studies
● Commercial codes don't (or wont) tell you

– Noise estimates
– Non-normal-incidence wavelets
– Time to depth or positioning errors
– May struggle with

● Multiple wells
● Deviated wells

– wavelet uncertainties



Wishlist
● Wavelet coefficient extraction (plus errors)

● Wavelet length estimation (plus errors)

● Noise estimation (plus errors)

● Petrophysics model choices

● Time to depth adjustments(plus errors)
– Integrates checkshots and sonic logs

● Positioning adjustments (plus errors)

● Multi-well

● Multi-stack



Wavelet Parameterization (1)
• Wavelet coefficients mw

– Nyquist-rate knots on cubic splines with zero endpoints & 
derivatives

– Ensures decent tapering & correct bandwidth
– Span ? (see later)

• Prior P(mw)=N(0,s2I)N(tp,σp
2)N(Φ(ω),σφ

2I)

Optional  timing prior

Optional phase prior in passband



Checkshot Parameterization (2)

● Time to depth parameters

z

Checkshots (e.g. from VSP tools)

Markers (geological identifications)

t

N(tm,i,σm,i
2)

N(tc,i,σc,i
2)

Global (well specific) time shift

tg±σtg

vvintint((zzii+1+1--zzi i ,,ti+1-ti) ~ N(N(vvloglog--averageaverage,, σv
2)



Petrophysics parameterizations: 
Multi stack

Near stack

Far stack

Near stack



Petrophysics Parameterizations(4): 
AVO effects (Linearized Zoeppritz)

● General approximate p-p reflection coefficient

R=½(∆ρ/ ρ + ∆vp/ vp) + B( θ2(½∆vp/ vp - 2vs
2 (∆ρ/ρ+2 ∆vs/vs)/vp

2)

+ θ2 )∆δ/2
shear dependent

normal incidence angle unknown?

Thomsen  anisotropy parameters: 

● Stack angle θ2 = vp
2 /(Vstack

4Tstack
2/<Xstack

2>)

● R computed at block boundaries:  vp,vs,ρ are Backus-
upscaled segment properties (i.e. error-free log data)

● Anisotropy: δ ∼ Ν(δf,σf
2),   f=lumped facies parameter 

label (from classification of segment)



Anisotropy issues

● Processing issues for AVO
– Many potential amplitude effects at wider offset

● Absorption/scattering/spreading/acquisition footprints, 
etc.. etc.. etc

– Ch. 4.3 “Quantitative seismic interpretation”
Avseth, Mukerji, Mavko.



Preprocessing: Impedance 
Blocking

● Based on segmentation of p-
wave impedance (ρvp)

– Max Lik. methods O(N2), or

– Blended hierarchical stepwise 
segment/aggregate method 
(O(Nlog(k))

– ref: D.M.Hawkins, Comp. Stat. & Data 
Analysis 37(3), 2001

● Increases speed
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Optimisation of Bayesian Posterior
● m={mwavelet,mcheckshot,mregistration,mpetrophysics}
● Maximise ∏ ∝ exp(-χ2/2 )

χ2  = Σ 
t,stacks,wells

(w(m)*Reff – S)2 /σs
2 "good synthetic"

+ (d+1) Σ 
stacks

log(σs) "noise normalisation”

     + Σ 
intervals,wells

(vint(m)-<vint>)2 /σv
2    ”prior: interval velocities c.f. sonic logs”

+ (m-<m>)TCp
-1 (m-<m>) "prior on checkshots, wavelet coeffs”

+ wavelet timing/phase prior "e.g. constant phase"



Optimisation, Hessians, 
Approximate uncertainties
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Maximum aposteriori estimates

Quadratic approximation to uncertainties
-(1) direct from F.D. Hessian or
-(2) from Bayes' update formula
- C=(Cp-1+XTCD

-1 X)-1 parameter 1

parameter 2

Gauss Newton optimiser

•Gauss-Newton, BFGS methods: see e.g. Nocedal & Wright "Numerical Optimization"
•O(d2) x O(forward model cost) x N(models)
•Typical dimensionalities: d=10-100, n = 100-1000 



Optimisation outputs

● Maximum aposteriori parameters 
– SU wavelets, ascii time-to-depth files, 

visualization dumps etc.

● Covariance diagonals (parameter uncertainties)
● Posterior model probabilities (wavelet span, 

checkshot choice etc)
● stochastic wavelets from the posterior



Generic aspects of well-ties

Statistically insignificant

Statistically insignificant

Bayes ML wavelet
Typical commercial 
extraction

realisations



Joint straight-hole & sidetrack

StraightSidetrack
tvdtvd

Tight checkshot
uncertainties at
strong amplitudes

No logs: 
checkshot 

uncertainties
go to prior 

Looser checkshots
with weaker
amplitudes



Interval sonic velocities constrained to within 5% of log average

Straight hole detail with logs



Parameter uncertainty cross 
sections
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deviation



General effect of allowing more 
freedom

● Wavelets sharpen, noise reduces



Cross well issues: Wavelets and Ties

Wavelets from various extractions

Synthetics/traces from joint extraction



Relations to Cross-validation

● Leave-one-out pseudo Bayes factor

● Has asymptotics of Akaike information criterion
– Log(P(D|k)) += d    (c.f. Bayes info. crit. = (d/2)log(nD) 
– (less severe on richer models)

B12(cross−val ) = p(d i |d{ j≠i} ,M 1 )
p(d i |d{ j≠i} ,M 2 )

i=1

nD

∏



3 Model Selection examples



(1) Simple Wavelet-length choice



Absolute significance tests
● MAP Wavelet length not shortest model
● MAP noise level exceptional on null-hypothesis 

test
– Perform ensemble of extractions on fake seismic 

data with matched bandwidth and univariate
statistics:

P(σnull)

σtrue
σnull



(2) Checkshot choice (25 models)
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Richest 
model



Max. 
aposteriori 

model



Model probabilities and noise



(3) Naïve 
facies-driven 
anisotropy 

choice

δ~0.15



Conclusions
● Model selection is desirable in nearly all inverse problems

● Marginal model likelihoods can be tricky
– Careful construction of prior
– Efficient (differentiable) forward models
– Efficient optimisers

● Bayesian model selection is quite “opinionated”. Very Occamist: 
severe on overparameterised models

● Selection is a doable problem for wavelet extraction. Produces
– Often compact wavelets
– Simplified checkshots
– Significant potential for missing-data (petrophysics) problems



O me, the word 'choose!' I may neither choose whom I 
would nor refuse whom I dislike.

Portia, The Merchant of Venice.

More info: 
● www.google.com/search?q=James+Gunning+CSIRO

– “Wavelet extractor” open source code (java), demos, 
papers.

– Part of “Delivery” suite (Bayesian seismic inversion)

● Computers and Geosciences 32 (2006)



Data-positioning uncertainty (1)

● y(m) = f(m)   an unusual regression problem
● Simple toy problem; fitting a line y=a+bx:

– y ~ X.m + e,      Jeffrey's prior on e ~ N(0,σ)
– Priors:

● P(σ ) ~ 1/ σ
● P(m|σ) ~ N(0,g σ2(XTX)-1)  ("Zellner")

– Posterior marginal 

∏ = ∫ L(y|m,σ)P(m|σ)P(σ)dmdσ ~ (1+g(1-R2))-(n-1)/2

– Where R2 is usual coeff. of determination
● For two samples of “random” y

– B12 ~ ((1+g(1-R1
2))/ (1+g(1-R2

2)))-(n-1)/2



Data-positioning uncertainty (2)

● Fluctuation in B12 for problem with
● y=1+x+(25% fixed noise) + (5% fluctuations)
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