The Business of Open Standards in the E&P Industry

Michael Glinsky Chris Haase

Something for a businessman to think about

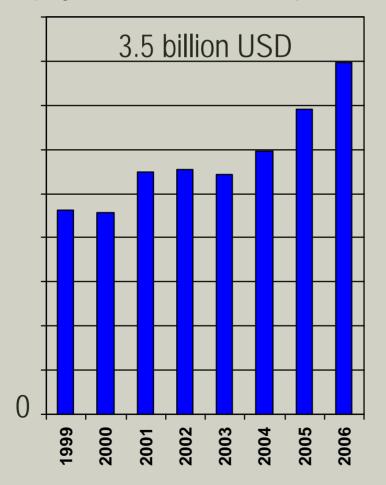
- Business opportunity
 - Consumers
 - Suppliers
- Business proposal
 - Description
 - Example
 - Issues
 - Barriers
 - Effectiveness
 - Winners & losers
 - Business models
- A final thought

The low hanging fruit (consumers)

"geoscientists and engineers spend between 30-60% percent or more of their time trying to find, qualify and correct data"

\$500 million/yr in lost productivity, or more importantly \$5 billion/yr value not created

^{* -} George Kronan, Landmark Division, Halliburton Energy Services, www.lgc.com/Landmark/resources/solutions+newsletter/2004/solutionsq4_2004.pdf


Another low hanging fruit (consumers)

The rate of innovation in subsurface data processing, visualization and storage is slow compared with other industries (PC and console gaming, defense, medical imaging, etc.)

The market is large and growing (suppliers)

Geophysical software and processing

With potential

- Top 4 majors have generated \$200 billion USD over same period
- Innovation could grow it 5 fold

Growth going to the innovative and market wise (suppliers)

- Approaching a status-quo in functionality with competition focused on price, compatibility amongst largest players
 - Lack of cross-platform communication creates high lock-in among customer base
 - Despite Schlumberger's Western GECO's growth, the company's market share has fallen 10% since 1999
 - SLB moving toward higher margin work
 - Giving up market share is a strategic choice
 - Halliburton market share has only grown 25% since 2001
- Faster growth is seen in companies meeting unsatisfied demand
 - Innovative solution
 - Veritas and Petroleum Geo-Service have doubled their market share since 2001
 - Ignored niche market
 - Dawson Geophysical has doubled their market share in the past year
 - Dawson benefited from Schlumberger's decision to abandon the US land seismic acquisition market

The proposal

- A clue to the proposal
 - Large oil companies very reluctant to consider deviations from standard computing platforms or continue to embrace their "homebrewed" platforms
 - NOC and small independents are increasingly moving towards Linuxbased open source software environment
 - Fear imperialism of oligarchs
- The proposal:
 - Open source software development of an open standard for:
 - Inter application communication (operating system)
 - Data communication

What is Open Source Software Development? a community

- Open Source Software Development (OSSD) is a communitybuilding process
 - not just a technical development process
- OSSD peer review creates a community of peers
- OSSD processes iterate daily versus infrequent singular (milestone) software engineering events
- OSSD depends on frequent, rapid cycle time (easier to improve)
 vs. infrequent, slow cycle time of proprietary released software (harder to improve)
- An OSSD project defines a living, evolving technical standard

Open Source Software Development: here to stay

- OSSD is different than proprietary software engineering
 - Not better, not worse, but different
- OSSD, once considered revolutionary, is now very commonplace
 - Redhat-Linux, IBM-Eclipse, Sun-NetBeans and OpenOffice, HP-Gelato, Apple-Darwin, Microsoft Research-Rotor, SAP-DB, etc.
- More social, more accessible, more transparent
- OSSD systems don't need and probably won't benefit from classic software engineering management
- OSSD has a well-defined culture (values, norms, and beliefs)
 - GNU Public License (GPL) for free software
 - More open source licenses (http://opensource.org)

Where is an open, not proprietary, solution likely

	Low Economies of Scale	High Economies of Scale
Low Demand for Variety	Unlikely	High
High Demand for Variety	Low	Depends

Source: Information Rules, pg. 188, Carl Shapiro & Hal R. Varian

Economies of scale enabled by an Open Standard

- Demand-side economies of scale
 - "Network Effect"
 - Metcalfe's Law = Power of Net = Nodes²
 - Performance / Productivity Increase
 - Compatibility
 - Evolution & Migration Path
- Supply-side economies of scale
 - Consolidated platform
 - Independent distribution channels
 - Value-driven pricing

Virtues of a Open Standard

- The GPL/BSD qiWorkbench[™], as an example, delivers:
 - An inexpensive subsurface data visualization system free of proprietary "lock-ins"
 - A flexible system wherein additional qiComponents[™] or "plug-ins" may be added, as needed
 - A compatible subsurface data processing system with the ability to "speak" the proprietary data formats of other vendors via qiComponent qiSevices.
 - A transparent technology whose source code is available to the entire user community
 - A technology that give the operator freedom of choice between compatible, interoperable applications from multiple manufacturers

Barriers to Open Standard

- Market competition monetary-political forces
 - Halliburton (Landmark), Schlumberger (Petrel), etc.
 - Allied vendors for services & products (Open Spirit)
 - Bundle-based pricing vs. a-la-carte pricing
- Installed base inertia
 - Switching costs compatibility and translation costs
 - Redevelopment costs managing high-cost, customized packages
- Social barriers human inertia
 - Indifference and learning curves
 - Status quo & laziness
 - Company & individual compartmentalization: Geologists, Geophysicists, Petrophysicists, Drillers, Reservoir Engineers, Production Engineers; Exploration vs. Production Operations; US, Europe, Africa, Middle-East, Asia
 - Resistance to change-for-sake-of-change
 - NIH not invented here
 - Technological religion speaking heresy

Effectiveness of an Open Standard

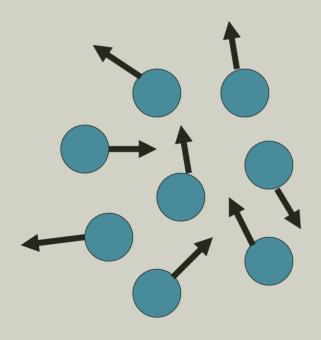
- Standards enhance compatibility and interoperability, generating value for users by making the network larger
 - A large network is a great benefit to consumers (examples of interoperable format standards include DVD, VHS, 3.5" hard disks, 802.11g WiFi and GSM cell phone standard)
- Standards reduce the lock-in technology risk faced by consumers and thereby accelerate acceptance of the (revolutionary) technology
 - Incompatible products, consumer confusion and fear delay technology up-take and adoption (that surrounded the Picture Phone in the 1970's and AM stereo in the 1980's)
- If the standard is managed as a (quasi-) open standard (like MPEG or Mozilla browser), the risk of emergence of a new competing standard will be low
- A pervasive standard leads to fewer compatibility problems and stronger network externalities
 - But can also reduce the ability of a supplier to differentiate its products, resulting in increased price competition and increased speed of innovation
- Company like BHPB who competes on basis of quality of their people and their know how is strategically aligned with good open standard

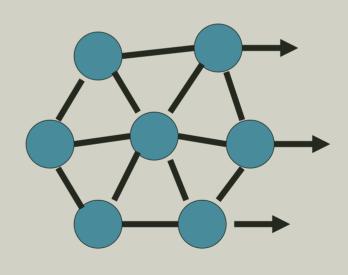
Winners and losers of Open Standards

- Consumers (winner) they welcome being spared of having to pick a winner and face the risk of being stranded
 - Enjoy network effects and interoperability
 - Can mix and match components to suit their needs
 - Are less likely to become locked into and held hostage by a single vendor
- Complementors (winner) sellers of components welcome standards so long as their products comply with them
 - Record companies enjoy licensing revenues from iTunes, a complementary product offering to the Apple iPod
 - When sales of iPods increase, demand for iTunes also increases
 - Imagine downloading qiComponents that you need from qiComponent.org or qiComponent.com

Winners and losers of Open Standards (continued)

- Innovators (winner) companies and individuals developing and applying new technology collectively welcome standards because they expand the total size of and access to the market
 - if a group of innovators all benefit from setting a standard but do so in different ways, complex and protracted negotiations could result
 - As did between the US, Europe and Japan relating to HDTV
- Incumbents (depends) have one of three choices:
 - Deny backward compatibility to entrants with new technology
 - AT&T tried this with their network switches in the 1970s and forced MCI to sue, resulting in the famous break-up of Bell Telephone (loser)
 - Rush to introduce new equipment or standard
 - Atari tried to do this unsuccessfully with their 7800 video game system when faced with Nintendo's entry into the video game market (loser)
 - "Join 'em" and ally itself with the new technology
 - Sony and Philips did with the CD and DVD (winner)


Making money with an Open Standard


- "Shrink wrap" packaging and maintenance
 - Think Red Hat
- Web distribution
 - Think iTunes, Amazon.com (qiComponent.com)
- Content providers
 - Think CNN.com, independent musicians (qiComponent makers, technical innovators)
- Service providers
 - Think eBay, eHarmony.com (qiServices.com)

Open Standards - not if, but when

- Need is obvious and significant
- Tipping point will be reached
- Accelerated if we work together

