

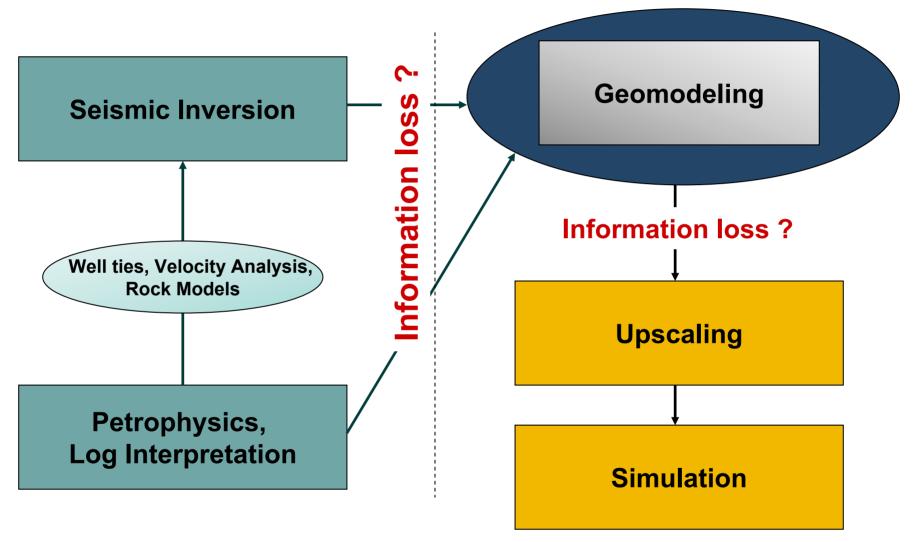
Downscaling Seismic Data to the Meter Scale: Sampling and Marginalization

Subhash Kalla LSU Christopher D. White LSU James S. Gunning CSIRO

Contents

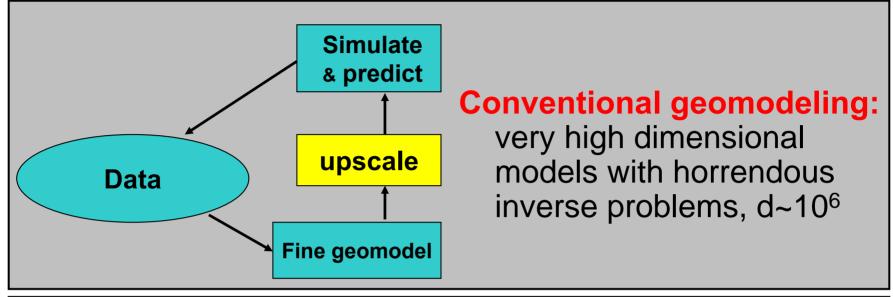
- Context of this research
- Background
 - Data integration
 - Upscaling issues
 - Seismic inversion data
 - Massager
- Methods for integrating inversion data
 - Inexact constraints
 - Auxiliary variables
 - 2D examples
- Sequential versus global simulations
 - Need for marginalization
 - 2D examples
- Conclusions

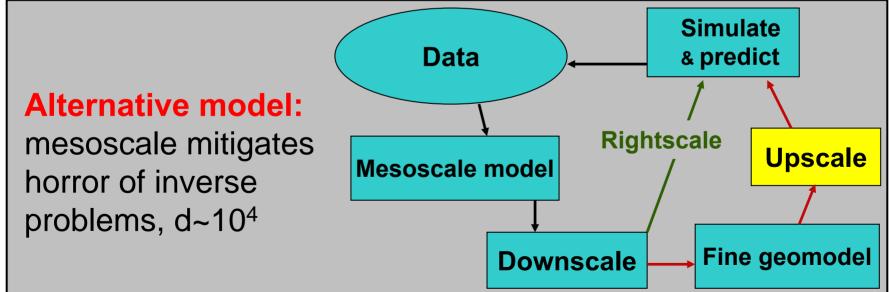
Overview



Gunning et al. 2006

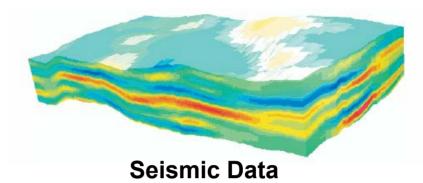
Modeling Scale Issues





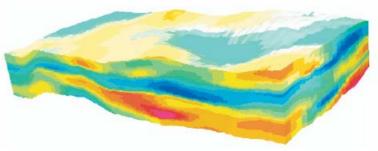
Seismic Processing using Bayesian Approach

- Seismic "calibration"
 - Wavelet extraction
 - Time to depth maps
 - Well ties (Gunning et al. 2003)

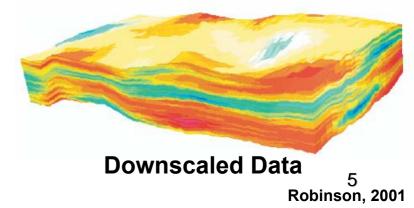


- Seismic inversion
 - Stochastic coarse scale ensembles of models (Gunning et al. 2005)

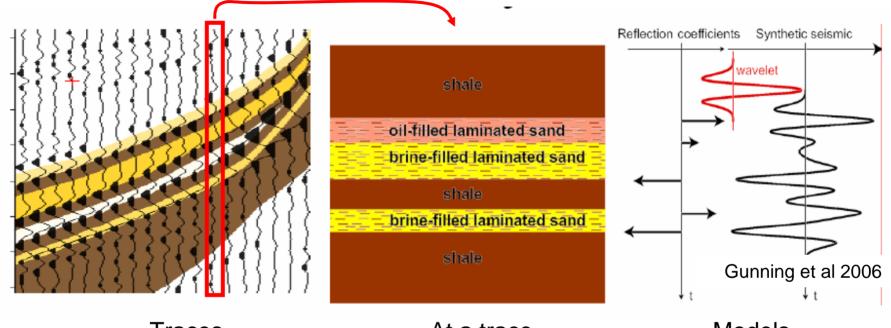
- Method to scale and integrate
 - Enforcer for probabilistic consistency between seismic and fine-scale data



Seismic Inversion Data (Input)



Wavelet and Seismic Inversion



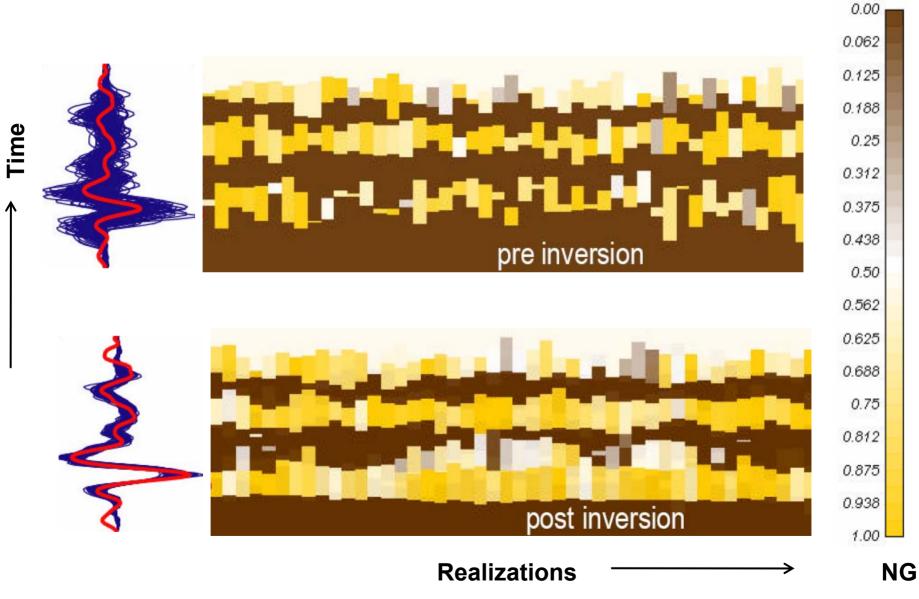
Traces

At a trace

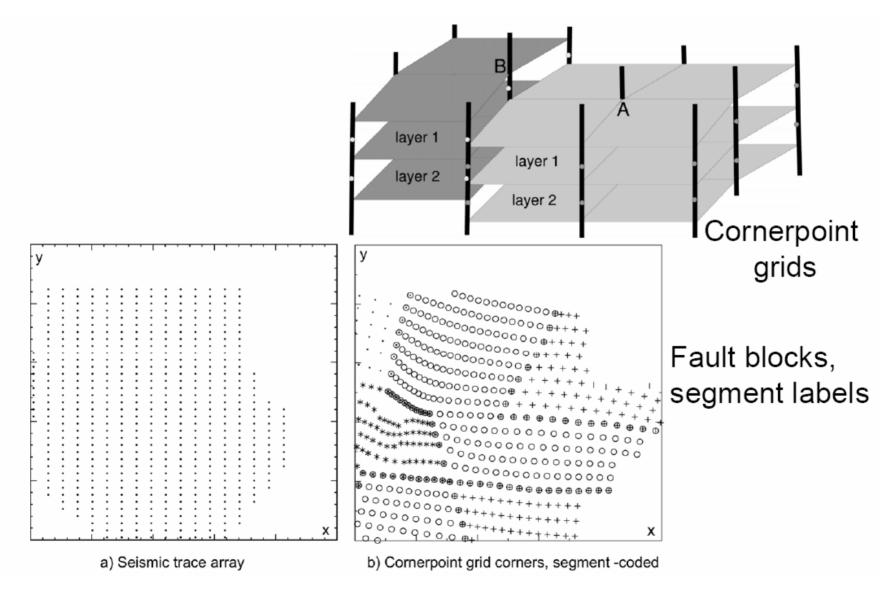
Models

- Fundamental parameters
 - Layer times
 - Fluid type
 - Rock properties in each layer

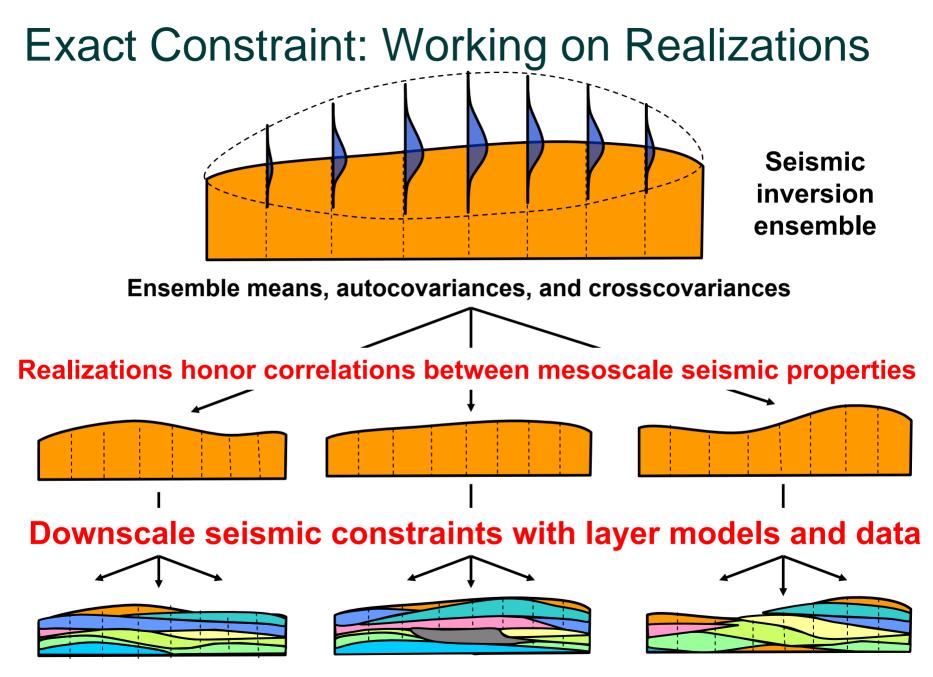
Realizations before and after Seismic Inversion



Massager: Geometric Transformation and Smoothing

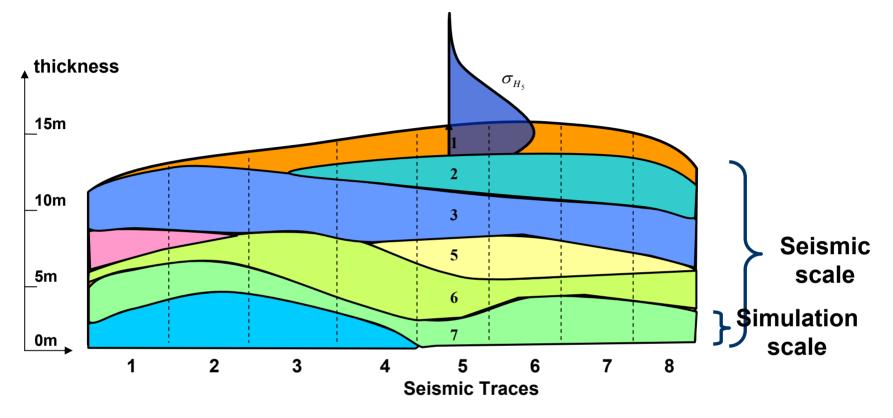


10 Sep 2007



10 Sep 2007

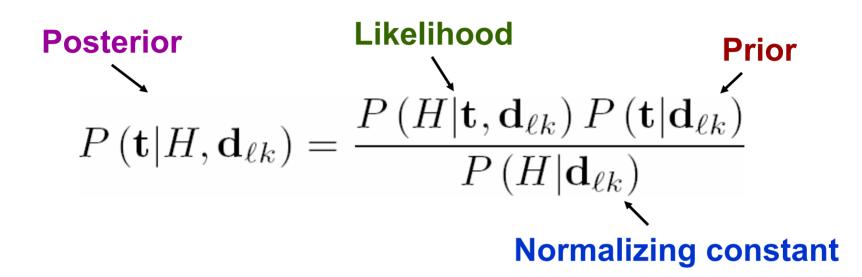
Inexact Constraint: Integration of Uncertain Seismic



Sum of layer thicknesses simulated should approximately match seismic thickness

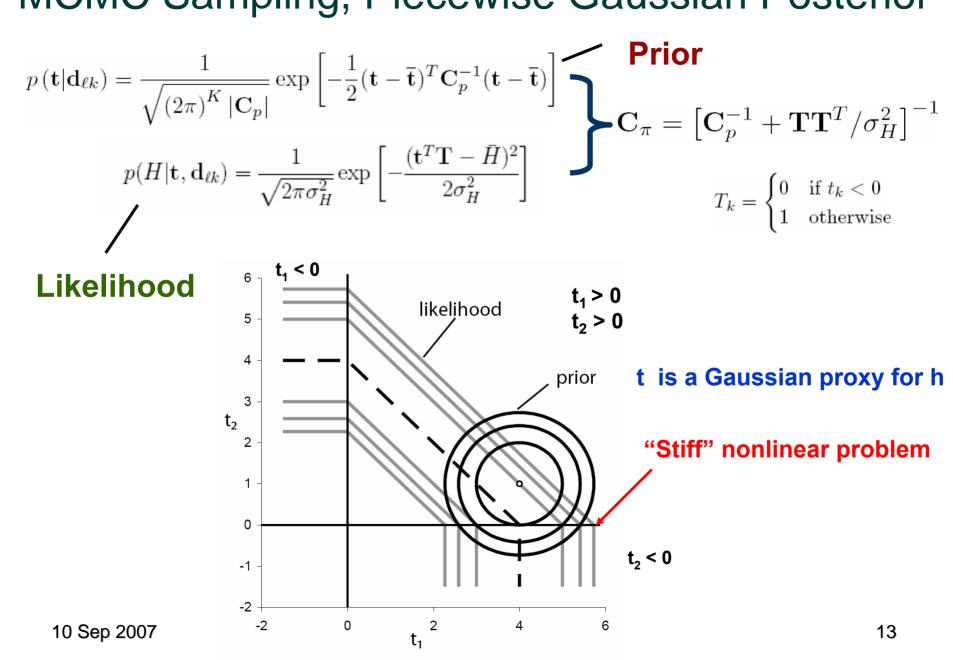
Inexact Problem

MCMC Sampling with Soft Constraints



- Prior from variogram and nearby data d_{lk}
- Likelihood from seismic mismatch
- **Posterior** by sampling many **t**
- Normalizing constant can be ignored

MCMC Sampling, Piecewise Gaussian Posterior



Auxiliary Variables to Sample Complicated Distributions

- Auxiliary variables generate samples from complicated distributions (Higdon, 1996)
- Lead to substantial gains in efficiency compared to standard approaches
- Inexact thickness t probability space is augmenting by u

$$\pi(\mathbf{t}, \mathbf{u}) = \pi(\mathbf{t})\pi(\mathbf{u}|\mathbf{t})$$
$$\pi(u_k = 1|t_k) = \begin{cases} 1 - \frac{1}{2 + t_k/\sigma_{\pi k}} & \text{if } t_k \ge 0\\ \frac{1}{2 - t_k/\sigma_{\pi k}} & \text{otherwise} \end{cases}$$

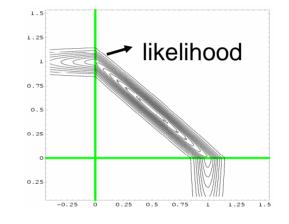
- Define auxiliary variable $u_k = \{0, 1\}$ as indicator of truncation, 1 for $t_k > 0$
- u_k is updated with a Gibbs step and Metropolis step to update the t_k

Data Augmentation to Handle Bends in the Posterior

 Reversible MCMC hopping scheme that adjust to the proposals to the shape of local posterior

$$\mathbf{C}_{\pi} = \left[\mathbf{C}_{p}^{-1} + \mathbf{T}\mathbf{T}^{T}/\sigma_{H}^{2}\right]^{-1}$$

$$\mathbf{C}_t = s\mathbf{C}_{\pi}$$
 where $s = \frac{5.76}{K}$

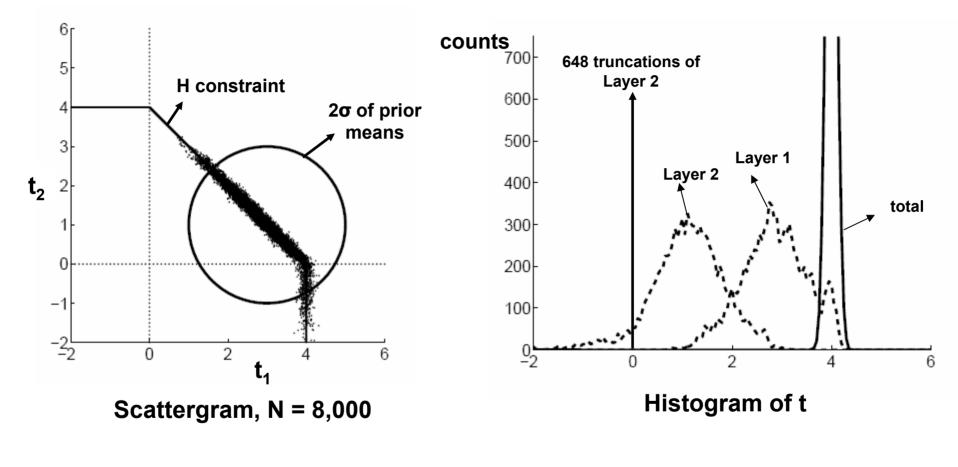


 Metropolis transition probability for t includes thickness and auxiliary terms

Gelman 2003; Roberts

$$\alpha = \min\left(1, \frac{\pi\left(\mathbf{t}'|H, \mathbf{d}_{\ell k}\right)\prod_{k=1}^{K}\pi(u_{k}|t_{k}')}{\pi\left(\mathbf{t}|H, \mathbf{d}_{\ell k}\right)\prod_{k=1}^{K}\pi(u_{k}|t_{k})}\right)$$

Pinching Layer with Consistent Tight Sum Constraint



Likelihood: $\overline{H} = 4 \text{ m}, \sigma_H = 0.1 \text{ m}$ **Prior:** $\overline{\mathbf{t}} = (3 \text{ m}, 1 \text{ m}), \sigma_t = 1 \text{ m}$

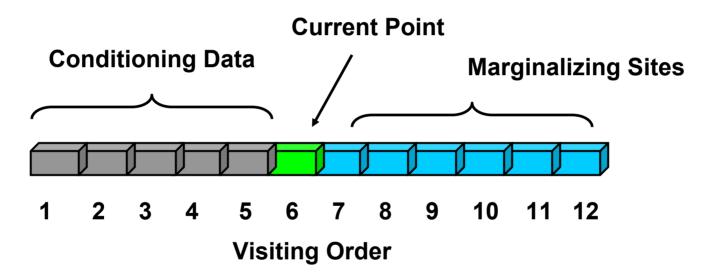
10 Sep 2007

Marginals

Comparison of Global and Sequential methods

The posterior can be decomposed in to product of marginals for sequential simulation

 $\pi(\mathbf{t}) = \pi(\mathbf{t_1})\pi(\mathbf{t_2}|\mathbf{t_1})\dots\pi(\mathbf{t_I}|\mathbf{t_1}\dots\mathbf{t_{I-1}})$



Marginal needs to integrate un-simulated sites

$$\pi(\mathbf{t}_6|\mathbf{t}_1\dots\mathbf{t}_5,\mathbf{H}) = \int_{-\infty}^{\infty} \prod_{j=5}^{12} L\left(\mathbf{H}_j|\mathbf{t}_j\right) p\left(\mathbf{t}|\mathbf{t}_1\dots\mathbf{t}_5\right) \mathrm{d}\mathbf{t}_7\dots\mathrm{d}\mathbf{t}_{12}$$

10 Sep 2007

Marginals for Sequential Gaussian Simulation

If all t are Gaussian functions then also marginals are to be computed at each trace

 $\pi(\mathbf{t}) = \pi(\mathbf{t}_1)\pi(\mathbf{t}_2|\mathbf{t}_1)\dots\pi(\mathbf{t}_I|\mathbf{t}_1\dots\mathbf{t}_{I-1})$

Marginal at the first trace

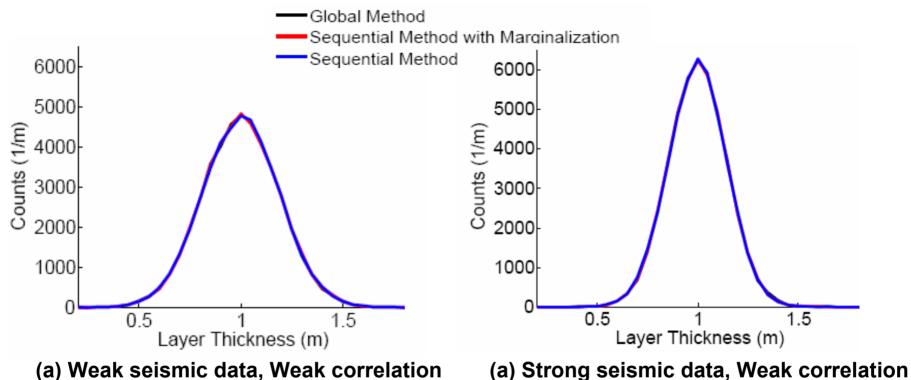
 $\pi(t_1|\mathbf{d}) = \int \pi(\mathbf{t}|\mathbf{d}) \mathbf{dt}_* \qquad \text{ where } \mathbf{t}_* = (t_2 \dots t_{12})$

$$\pi(\mathbf{t}_1|\mathbf{d}) \propto \int \exp\left[-\frac{1}{2} \begin{pmatrix} \mathbf{t}_1 - \mu_1 \\ \mathbf{t}_* - \mu_* \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} \mathbf{C}_{11} & \mathbf{C}_{1*} \\ \mathbf{C}_{*1} & \mathbf{C}_{**} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{t}_1 - \mu_1 \\ \mathbf{t}_* - \mu_* \end{pmatrix}\right] \mathrm{d}\mathbf{t}_*$$

$$\propto \exp\left[-\frac{1}{2}(t_1-\mu_1)C_{11}^{-1}(t_1-\mu_1)\right]$$

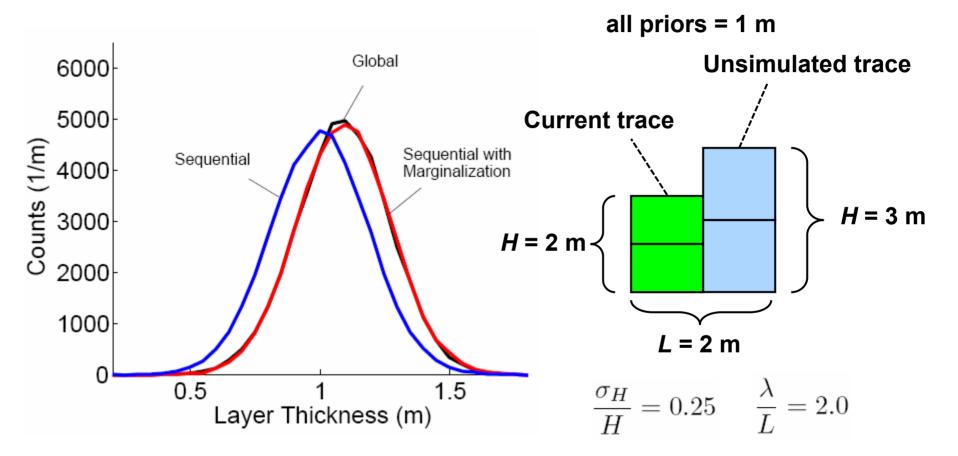
Marginal doesn't depend on un-simulated sites for pure multi-Gaussian distributions

Comparison of Global and Sequential Methods Verify: Marginalization not Needed if Weakly Correlated



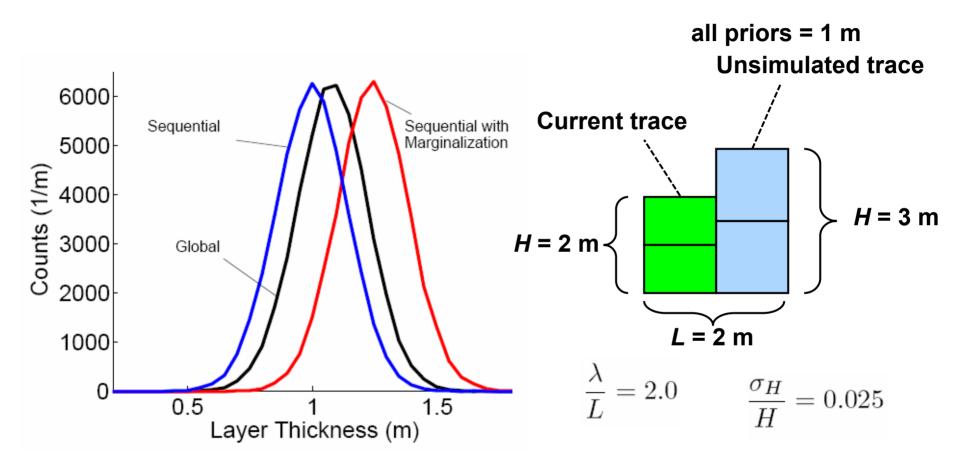
- Sequential simulation with Marginals (SM)
 Marginal is integrable assuming linearity in unsimulated points and
 - "weak correlations"
- Sequential Simulation (SS)
 - Heavier approximation of no lateral correlation gives SS
- Compared to a rigorous <u>Global Method</u> (GM) (Using exhaustive MCMC)

Comparison of Global and Sequential Methods Success: Integrates Surrounding Constraints



Strong correlation, constraint locally weak, marginalization improves simulation

Comparison of Global and Sequential Methods Failure: Inconsistent Data



Strong correlation, constraint locally strong:

poor results if nearby mean seismic thicknesses are not consistent

Conclusions

- Framework for multi-property data integration accounting for the scale and precision of different data types
- Poor mixing of MCMC samplers for exotic-shaped posteriors much improved using auxiliary variables
- Sequential methods: full distributions should be marginalized at current trace in certain conditions
 - Especially if correlation is strong ($\lambda/L > 0.5$)
 - Proposed marginalization may fail if $\frac{\bar{H} \bar{H}_{Marg}}{\sigma_H}$ is not small
- Sequential methods appear adequate if lateral correlations and updating constraints are weak

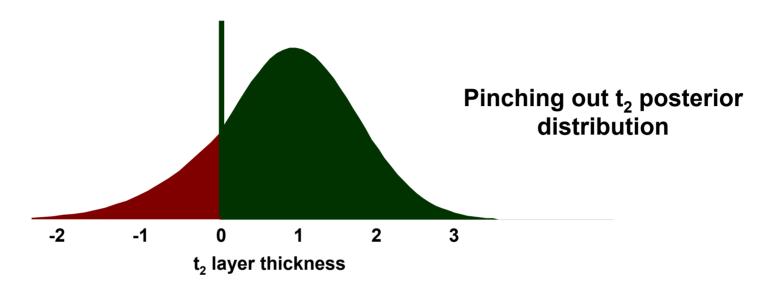
Acknowledgements

BHP-Billiton for funding this research

Downscaling Seismic Data to the Meter Scale: Sampling and Marginalization

James S. Gunning CSIRO (James.Gunning@csiro.au)

Handling Pinchouts



- A Gaussian model is efficient and simple, but some of the *t* (proxies for *h*) are negative
- Set geomodel thickness h = 0 if t < 0

Comparison of Global and Sequential methods

The posterior as a product of marginals for sequential simulation

 $\pi(\mathbf{t}) = \pi(\mathbf{t}_1)\pi(\mathbf{t}_2|\mathbf{t}_1)\dots\pi(\mathbf{t}_I|\mathbf{t}_1\dots\mathbf{t}_{I-1})$

Marginal integrates unsimulated data

$$\pi(\mathbf{t}_i|\mathbf{t}_1 \dots \mathbf{t}_{i-1}, \mathbf{d}) = \int_{-\infty}^{\infty} \prod_{j=i+1}^{I} L\left(\mathbf{H}_j|\mathbf{t}_j, \mathbf{d}\right) p\left(\mathbf{t}|\mathbf{d}\right) \mathrm{d}\mathbf{t}_{i+1} \dots \mathrm{d}\mathbf{t}_I$$

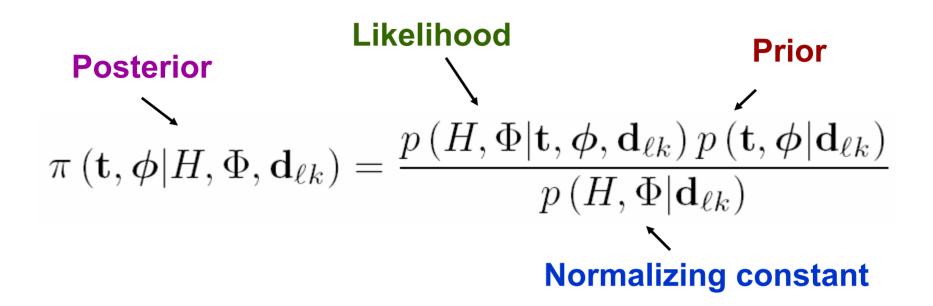
Analytically integrable if we assume linearized constraints at unsimulated points and "weak correlations"

$$\pi \left(\mathbf{t}_1 | \mathbf{H} \right) \propto e^{-\frac{\left(f(\mathbf{t}_1) - \mathbf{H}_1 \right)^2}{2\sigma_{\mathbf{H}_1}^2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} (\mathbf{X}_2 \mathbf{t}_2 - \mathbf{H}_2)^T \mathbf{C}_{\mathbf{H}_2}^{-1} (\mathbf{X} \mathbf{t}_2 - \mathbf{H}_2)} p\left(\mathbf{t}_1, \mathbf{t}_2 \right) d\mathbf{t}_2$$

No lateral correlation --> standard sequential simulation (without marginalization)

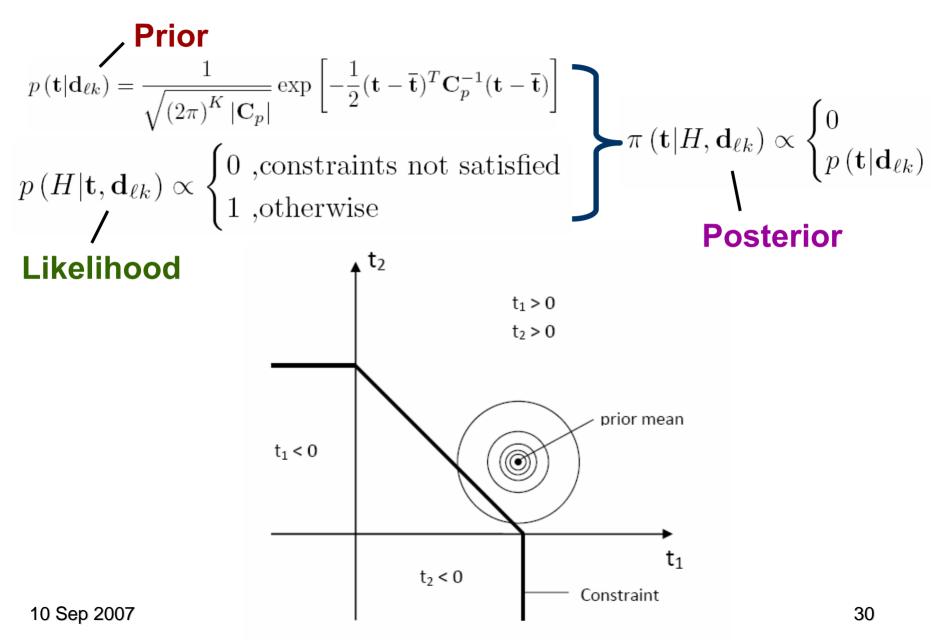
$$\pi\left(\mathbf{t}_{1}|\mathbf{H}\right) \propto e^{-\frac{\left(f(\mathbf{t}_{1})-\mathbf{H}_{1}\right)^{2}}{2\sigma_{\mathbf{H}_{1}}^{2}}} p\left(\mathbf{t}_{1}\right)$$

Problem Formulation in Bayesian Form



- Prior from variogram and nearby data d_{lk}
- Likelihood from seismic mismatch
- **Posterior** by sampling many **t**
- Normalizing constant can be ignored

Expressions and Visual Clues of Bayesian Terms



MCMC Sampling with Exact Constraints

- lacksim Basis orthogonal to ${f u}=(1,1,\ldots,1)$
- Random walk in R where

$$oldsymbol{ au} = (\delta, \mathbf{r})$$

• Obtain δ by solving

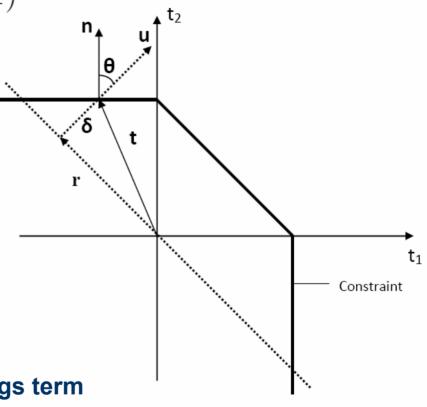
$$\sum_{j=1}^{K} \max(0, \mathbf{t}_j(\delta, \mathbf{r})) = H$$

Transform coordinates using matrix U

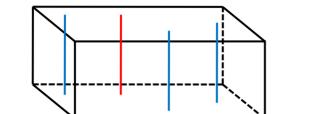
$$\mathbf{t} = \mathbf{U}. \boldsymbol{ au}$$

Jacobian included in Metropolis-Hastings term

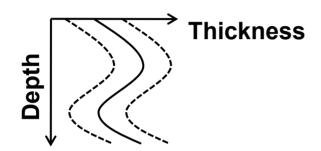
$$\tilde{\pi}(\mathbf{t}) = \pi(\mathbf{t})|\mathrm{sec}(\theta)| = \pi(\mathbf{t})\frac{1}{\mathbf{u}.\mathbf{n}(\mathbf{t})}$$



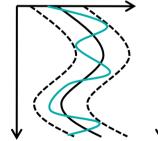
Sequential MCMC

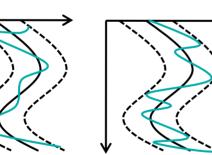


Generate path and select an estimation location randomly (red line) from within the 3D volume



Krige the well data (blue line) to derive the mean (solid line) and variance (dashed line) of the log data at the estimation location

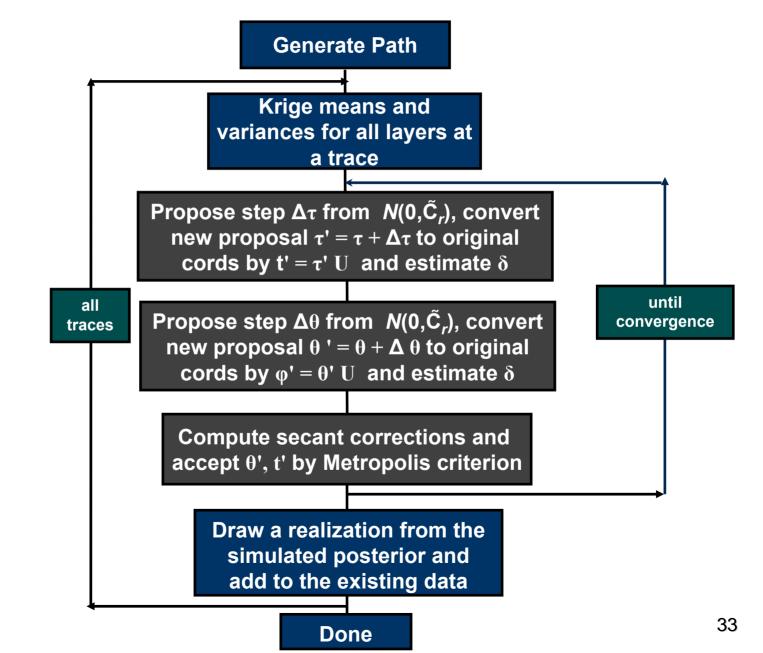




Propose many equiprobable thickness and porosity values that match seismic inversion data

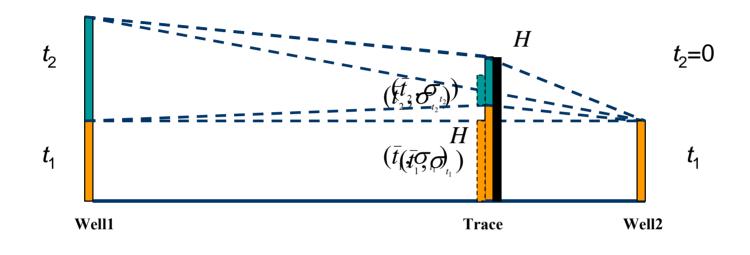
Randomly retain one as the solution and repeat the process at all the traces

Sequential TG-MCMC



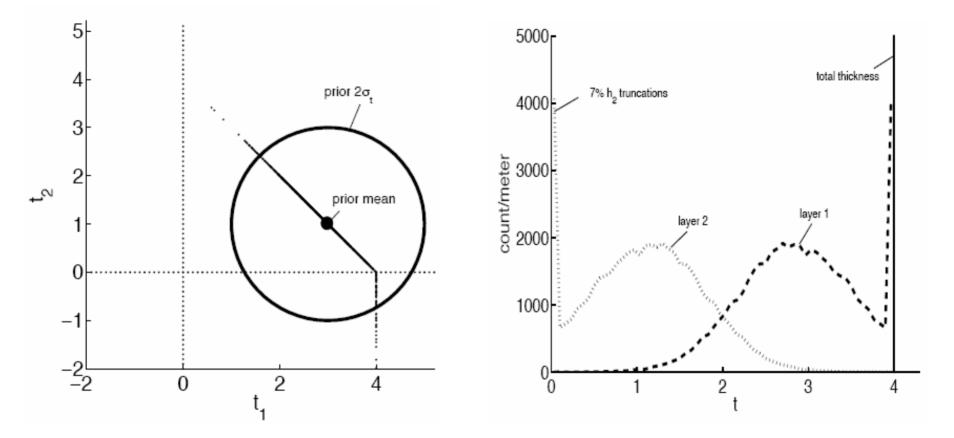
10 Sep 2007

A Simple Two layer Case



- Bayes reconciles seismic and well/continuity data
- Simulation retrieves the complete distribution, not just the most likely combination

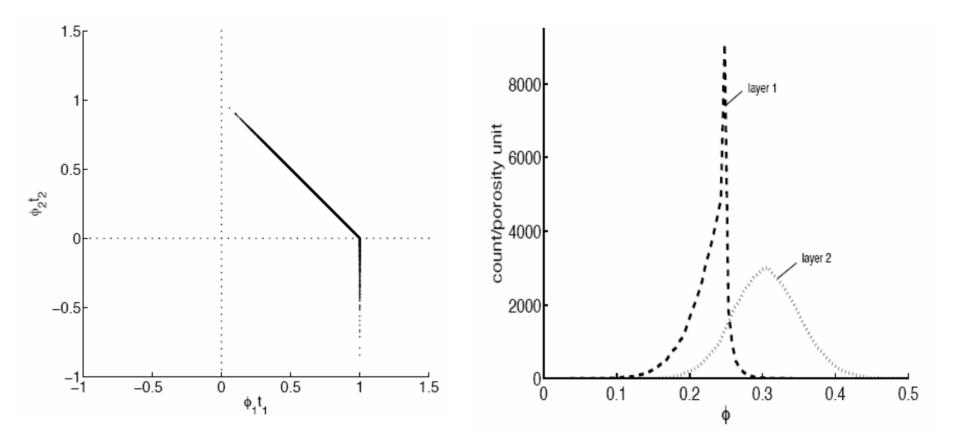
Pinching Layer with Consistent Thickness Sum Constraint



Likelihood: H = 4m

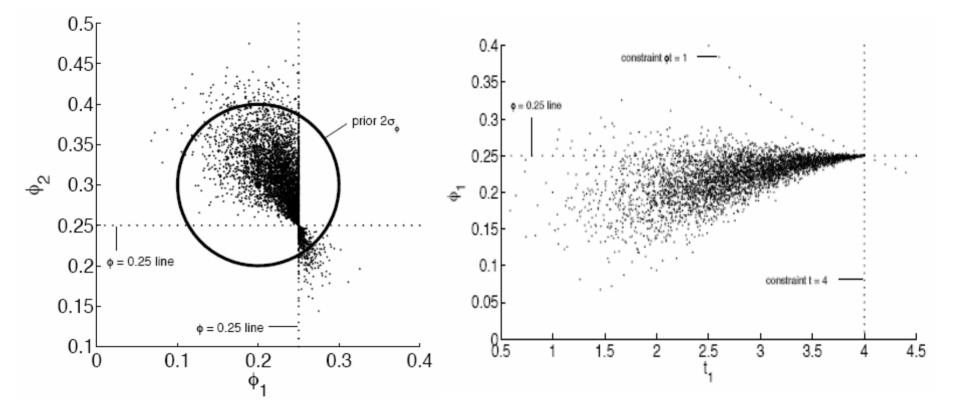
Prior: $\bar{t} = (3 \text{ m}, 1 \text{ m}), \sigma_t = 1 \text{ m}$

Samples Honoring Porosity Constraint



 $\Phi = 0.25 \Longrightarrow \Phi H = 1.0$ $\overline{\phi} = (0.2, 0.3), \sigma_{\phi} = 0.05$

Cross Plots of Thickness and Porosity



 $\Phi = 0.25 \Rightarrow \Phi H = 1.0$

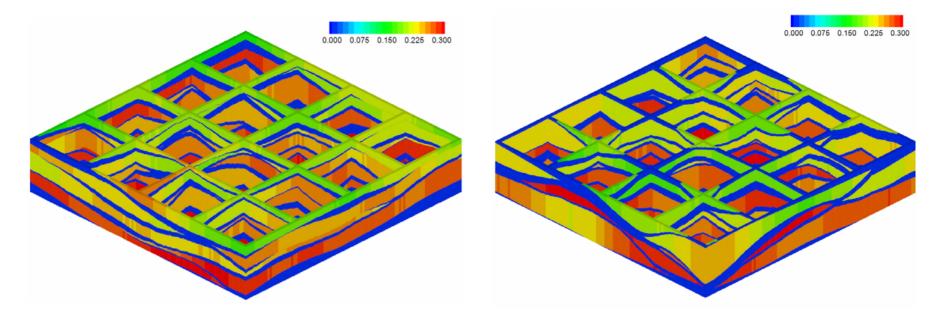
Effect of Priors on Reservoir Responses

	Sand Sill	Shale Sill	Sand Range	Shale Range
Low	2.25	0.25	250	250
Medium	16	1	500	500
High	36	4	1000	1000

- A simple two level (low and high) full factorial designs is chosen
 - Responses are different between 0.30 to 0.65 recovery factor
 - Response surface indicate Sand sill to be the dominating factor
 - Stochastic fluctuations are comparable to prior variations
- Six replicates at (16,1,500,500) and (36, 1, 500, 500)
 - Welch two-sample *t*-test indicate that the mean responses are different with *p* = 0.09243
 - Prior specifications has a statically significant effect on response

10 Sep 2007

3D Problem : Honoring Seismic Trends

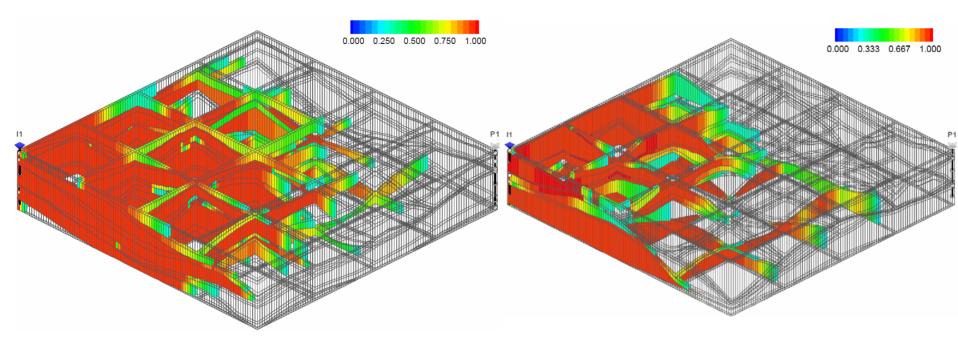


(a) Medium Sand Sill (4m²)

(b) High Sand Sill (36m²)

- Simulations on a 100 x 100 x 10 cornerpoint grids with 4 conditioning data
- $H = 20 \text{ m}, H_{s} = 14 \text{ m}, \Phi = 0.25, \text{ and } \Phi H_{s} = 3.5 \text{ m}$

3D Problem : Tracer Concentrations



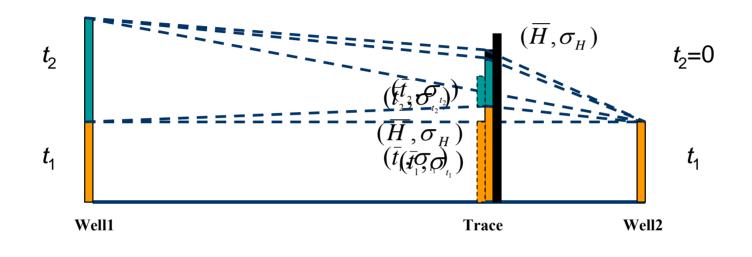
(a) Tracer in Medium Sill Case

(b) Tracer in High Sill Case

- Tracer concentrations before the break through
- Lower recovery in high sill case is caused by
 - Variability in thickness
 - More frequent terminations

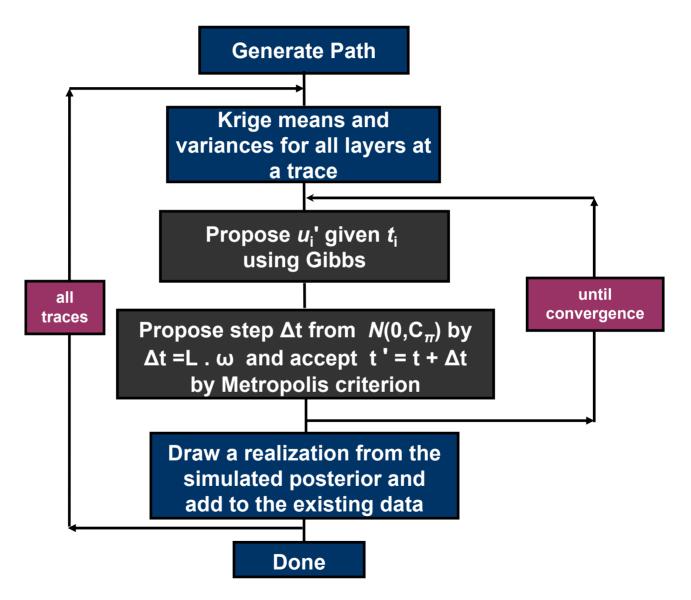
10 Sep 2007

A Simple Two layer Case

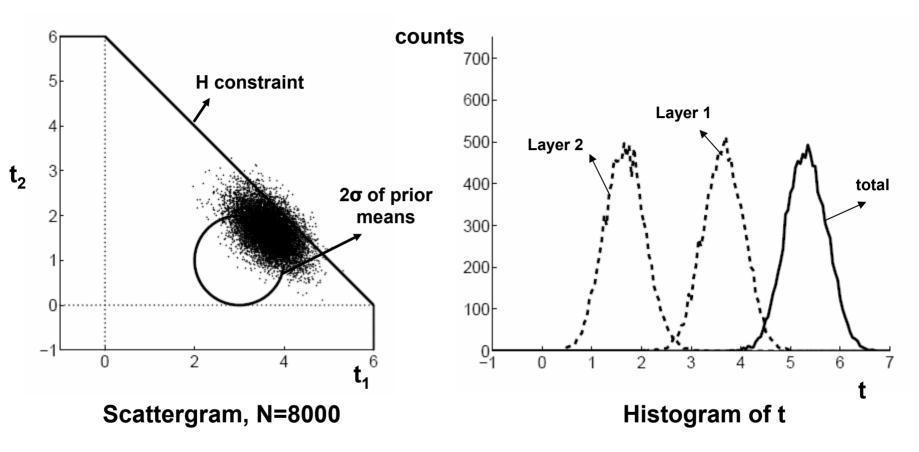


- Bayes reconciles seismic and well/continuity data
 - Posterior covariance weights each data type appropriately
- Simulation retrieves the complete distribution, not just the most likely combination

Sequential TG-MCMC



Prior not equal to weak constraint



$$\overline{H} = 6 \text{ m}, \sigma_H = 0.5 \text{ m}$$

 $\overline{\mathbf{t}} = (3 \text{ m}, 1 \text{ m}), \sigma_t = 0.5 \text{ m}$

Performance Summary

Process	Work in Seconds		
Kriging Work	1.7		
5000 samples, all traces	310.5		
Total cost of simulation	314.7		
Using 2 GHz Pentium-M processor with 1 GB of RAM			
Implemented in ANSI C, g77 compiler, using NR & LAPACK routines			

- 5000 samples for 10⁵ unknowns in 5min on a laptop
- 98% of computation is for generating and evaluating steps
- Fewer samples could be used in practice

Assumptions and Performance

- Layer thicknesses are vertically uncorrelated at each trace
- Lateral correlations are identical for all layers
- Toeplitz form for resolution matrix in non-exact constraint

$$\mathbf{G} = \begin{pmatrix} \frac{1}{\sigma_t^2} + \frac{1}{\sigma_H^2} & \frac{1}{\sigma_H^2} & \cdots & \frac{1}{\sigma_H^2} \\ \frac{1}{\sigma_H^2} & \frac{1}{\sigma_t^2} + \frac{1}{\sigma_H^2} & \cdots & \frac{1}{\sigma_H^2} \\ \vdots & \ddots & \ddots & \vdots \\ \frac{1}{\sigma_H^2} & \frac{1}{\sigma_H^2} & \cdots & \frac{1}{\sigma_t^2} + \frac{1}{\sigma_H^2} \end{pmatrix}$$

Efficient Toeplitz solver

• Handles layer drop-outs or drop-ins without refactoring

End of Slides