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SUMMARY
Mesoscale (~10 m) models using rock-physics concepts and effective-media ideas are a manageable basis
for Bayesian seismic integration because seismic is usefully informative at this scale. An attractive route to
geocellular scale (~1 m) models is downscaling mesoscale models using categorical (facies) simulations
that honor effective media laws, and using well data and geologic concepts to formulate priors.

In this nonlinear downscaling, it is unclear whether the overall posterior distributions for fine-scale models
can be approximated as the product of conditional distributions using local neighborhoods, which is
necessary for accurate sequential simulation. The factorization requires computing analytical marginal
distributions (integrating over “unvisited” sites) and conditional distributions dependent only on “visited”
sites. Analytical techniques fail for nonlinearly constrained problems; the only alternatives are expensive
MCMC or analytical approximations within a sequential method.  An approximation based on an
expansion assuming weak correlation between visited and unvisited sites is developed in this paper.

We test and illustrate by comparing global methods (with rigorous marginals) to local approximations.
Local method errors increase as correlation length increases, especially if seismic data are highly
informative or the marginals are poorly approximated. Using the proposed marginal approximation
improves sequential simulation accuracy for these cases.
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1 Introduction

Beds thinner than ∼10 m (λ/4; λ is the dominant wavelength) are poorly resolved in 3-D
seismic data at depths greater than ∼3000 m. This limit and errors in seismic-derived
property estimates complicate use of seismic data. However, these data can be used to
infer external geometry and guide subseismic stratigraphic models. An attractive im-
plementation of this idea is to incorporate seismic data in meso–scale Bayesian seismic
inversions that treat subseismic heterogeneity via effective-media theory, and subse-
quently downscale these inversions to meter–scale models using constraint equations
embodying the effective media laws (Gunning et al., 2007). In particular, downscal-
ing specific realisations drawn from the posterior of the meso-scale inversion produces
constraint equations for fine scale models.

The proposed approach models layer thicknesses as “marked–surfaces”, with trun-
cations of negative thicknesses to allow pinchouts. For example, a set of K sublayers
(thicknesses tk, k ∈ {1 . . .K}) of a meso-scale layer of total interval thickness H implies
the downscaling constraint for each column

K
k=1

max(tk, 0) = H

The constraint is embedded in a likelihood expression to yield a Bayesian posterior

π (t|H,d) ∝ L (H|t,d) p (t|d) (1)

where t is a vector of thicknesses, H is the “target thickness”, and d any additional
hard data. The posterior distribution for the fine scale parameters is in general high
dimensional, so we seek a sequential simulation algorithm passing over all columns of
the grid. Each column is simulated by sampling from a Bayesian posterior distribution
conditional on hard data and previously visited columns via the priors, and collocated
coarse scale constraints via the likelihood. A suitable likelihood, with “accuracy” σH

for K layers at a column with expected total net-sand thickness H is

L(H|t,d) ∝ exp


−


K

k=1

max(0, tk)


−H

2

/2σ2
H


 (2)

The prior distribution for the K layers is determined by kriging surrounding layer thick-
ness (using data and previous simulations); the distributions are t ∼ N(t̄,Cp), where t̄
and Cp are the kriged estimates and errors, respectively. A local, linearised posterior
covariance derived from (1) is

C̃ = (C−1
p +XXT /σ2

H)
−1 (3)

where X is a design matrix comprising 1’s if a layer k is present (tk > 0) and zero
otherwise; X depends on t. This nonlinearity makes the posterior a piece-wise Gaussian,
which is difficult to sample from.
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2 Linear Theory

If we partition the model vector t into I parts (t1 t2 . . . tI) and the likelihood is a
simple product over these parts, the posterior π can be written in the form

π(t) = π(t1)π(t2|t1) . . . π(tI |t1 . . . tI−1) (4)

which is suitable for sequential simulation. π(ti|t1 . . . ti−1) is the marginal distribution

π(ti|t1 . . . ti−1,d) =
 ∞

−∞

I
j=i+1

L (Hj |tj ,d) p (t|d) dti+1 . . .dtI (5)

Eqn. (5) is integrated over all tj , j ∈ {(i + 1) . . . I}. Consider the basic partitioning
into current (t1) and “unvisited” (t2) sites, t = (t1 t2). Assume the prior t ∼ N(µ,C),
observations y = (y1,y2) and error model y−Xt ∼ N(0,Cy). Without loss of generality
Cy (usually diagonal) can be absorbed into X and y. Using the notation Σ = C−1, the
marginal for t1 given y is then Normal, with covariance

C̃11 = (Σ11 +XT
1X1 −Σ12(Σ22 +XT

2X2)−1Σ21)−1 (6)

and mean
t̃1 = C̃11XT

1 (y1 −X1µ1) + C̃11XT
2 (y2 −X2µ2) + µ1 (7)

In sequential simulation, the dimensionality of t2 (and rank of C22) can be very
large. We need to approximate equations (6,7). One plausible approximation, based on
a “weak correlations” expansion (small C12), yields

C̃11 = (C−111 +X
T
1X1 +C−111 C

T
21X

T
2 X2C21C−111  

X2,eff

)−1 (8)

and
t̃1 = C̃11(XT

1 (y1 −X1µ1) +XT
2,eff(y2 −X2µ2)) + µ1. (9)

This removes the need to invert the (potentially very large) C22 matrix block. Equa-
tion (9) is a standard Bayesian formula to update t1 given y1, with the contribution
of secondary data y2 attenuated by the modified sensitivity matrix X2,eff. This is a
manageable approximation for the marginal that includes the effect of information at
unvisited sites.

3 Discussion and Examples

The above equations are for linear constraints f(t) = Xt + t0. For the nonlinear
constraintsX = X(t) in the downscaling problem , additional approximations are needed
to make the marginal for t1 tractable. If we neglect the nonlinearities in t2 then the
marginal is analytically integrable:

π (t1|H) ∝ e
− (f(t1)−H1)

2

2σ2
H1

 ∞

−∞
e
− 1
2
(X2t2−H2)TC

−1
H2

(Xt2−H2)p (t1, t2) dt2 (10)
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which we call sequential simulation with marginalization (SM). A heavier approximation
neglects lateral correlations between the current and unsimulated columns, t1 and t2,
yielding sequential simulation without marginalization (SS),

π (t1|H) ∝ e
− (f(t1)−H1)2

2σ2
H1 p (t1) (11)

A small 10 layer × 10 column 2D example compares SM and SS algorithms with a
global MCMC method (GM). Columns have 100 m separation. Two constrasting cases
of constraint uncertainty (σH) and lateral correlation (range, λx) are considered. The
seismic thickness constraint (H = 20 m) and σH are stationary. The prior means (for
µ1 in Eqn. (9)) are t̄k = 2 m ∀k; autocovariances are Gaussian with sill related to a
stationary prior standard deviation σt = t̄k. These parameters cause a high probability
for layers to pinch out, which is a feature of particular interest.

(a) Weak seismic data, strong correlation (b) Strong seismic data, strong correlation

Figure 1: Global (GM), sequential marginalized (SM), and standard sequential (SS)
simulation results for various cases. Fractions of zero-thickness beds are given in the
legend. Results are for layer 1.

Weak seismic constraint, strong geologic correlation (σH = 5 m and λx = 2000
m). The marginals for the first column visited for the global, marginalized, and stan-
dard sequential methods [Fig.(1a)] have only small differences between them. Similar
characteristics are observed if geologic correlations are weaker.

Strong seismic constraint and strong geologic correlation (σH = 0.5 m and λx = 2000
m). The marginals for the global method are narrower than the standard sequential
method. The approximate marginal method is closer to the rigorous MCMC result. For
tighter constraints, auxiliary variables are required for sampling (Kalla et al., 2006).

4 Conclusions

Sampling the uncertainty in these nonlinear downscaling problems is difficult. Global
MCMC methods are accurate but expensive, which motivates consideration of sequential
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methods. Cheaper sequential methods are reasonably accurate if the lateral correlation
is not high, and the constraints are weak. If the correlation is high and constraints are
strong, näıve sequential simulation poorly approximates the marginals. For such cases,
the proposed approximate marginals offer improved sampling at moderate cost.
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