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General error structure in
inverse problems

• Model

F(m) = forward model (Maxwell etc, or approximations)
y = measured data (E fields etc)
m = gridblock resistivities, anisotropy
       object-like: locations, surfaces, etc

• Error



3

Inversion approach

• Bayes

• Typically;

• If Cd “known”…

• Objections to Bayes
Often focused on P(m)
Noise structure in L(y|m) often more questionable/disputable



Some terminology
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Posterior Uncertainties
• Linearisation is useful only if the geometry is

extremely coarse. For finer models, F(m) has a huge
“null-space”. But decisions needed on finer models.

• Approximate posterior distributions from Hessian
usually very poor.

• Alternative sampling methods required
• Tailored MCMC methods

Exhaustive mode enumeration, followed by mixture of:
1) Reversible jump MCMC (diffusion)
2) Mode jumps
3) Big jumps along constant RTP

• Bayesianized Parametric Bootstrap



Illustrative 1D example
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Sea

overburden m1

m4

m2
m3

reservoirs
underburden

mi=log(ρi)

Tailored MCMC:



More complex MCMC example

• Mixing is hard. Very many samples needed



Bayesian Parametric bootstrap
• Randomized maximum likelihood in some papers
• Bayesian priors treated as “extra data”
• Bootstrap data sets drawn from “best-fit” model, and MAP inversions found for

each
• Many inversions needed. But avoids MCMC slow diffusion
• Jumps over parameter space very well



Uncertainties upshot

• MCMC - expensive. Many forward runs
• Bootstrap - approx. but cheaper. Many inversions
• Either way: very fast forward models needed

• But approximate forward models will increase the error, usually in a
correlated way

MCMC

Bootstrap



Example modelling errors (1)
3D FD/FE modelling:

Darnett et al , Geophysics 2007

Note  long correlations or
trends in errors...

Errors probably below
instrument errors ?



Example modelling errors (2)

Effective-media
framework

Errors (modestly
favourable case)

1D effective media CMP models



Example modelling errors (3)
• Layering known, Anisotropy neglected



Some things we know about model
inference from linear theory

• OLS estimates (Cd “known”)

Uncertainty depends on Cd at leading order
Robust components roughly independent of Cd

• Assumed covariance Cd→Ceff
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Variability in χ2



Example problem and 3 approaches
• Test data set with residuals

modified to give the effect of
trend with offset

• 250m thick resistor at 850m

• Inversion using zero-mean
noise, posterior of thickness
from marginalisation

Inversion gives
thickness pdf with mean
110m, and 250m above
upper 5% quantile.

Problem is not overfitted



1) Explicit regression for
trends/systematics

• noise=“trend(u)+random”

• Amounts to particular parametric forms
of overall noise covariance

• User specifies form of trends, plus
trend power/random power ratio

• Gaussian prior for mn comes from
trend/power ratio

• Joint inversion for m and mn (block-
augmented Gauss-Newton framework)

• Probably too messy for effects that
“thrash” (e.g. Re(E) ,Im(E))



2) Effective data reduction



2) Effective data reduction con’t
• Test problem:



• Use hierarchical model

• Inverse-Wishart prior

• mean

• variance

• ν ~ “number of prior samples” in estimating C0

3) Averaging over the unknown
noise covariance



Noise-covariance  updating

• Given noise δy and scatter matrix S (e.g. in Linear model):

• Covariance update

• Posterior mean is then

• This is an example of a “shrinkage” estimator: eigenvalues of S are
squeezed towards those of C0



Marginalising over unknown
covariance

• Effective marginal posterior…

• Compare to known-noise case (ν→∞)
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Marginalising for overall model
evidence

• Laplace-like approximation...

• C.f. usual expression with known noise

• How to choose C0 and ν ? Maximise marginal over free parameters
C0 and ν. Choose C0 from suitable subspace etc. Leads to EM
algorithms (Chen ‘79 and followers)

• Findings:
Limitation ν>d is annoying
Prior structure in C0 has strong influence and easy to mis-specify
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Everybody loves their Shrink(age) ....



Shrinkage on test problem

Calculation with α=0.1



Anisotropy example again

truth case model
approx isotropic model

caprock

resistor



Conclusions
• Independent Gaussian noise too optimistic given likely level of

modelling noise, even in heavyweight codes.
• Explicit removal or error trends possible with extra systematic-

trend parameters. Probably fragile.
• Error-bar inflation based on “RMS power” works, and easy to

implement. Rather ad hoc theory
• Use of shrinkage probably a better theory. More obvious

absorption of bias terms into covariance structure. Shrinkage
fraction probably not inferable from data.


