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SUMMARY

Mis-characterisation of the noise has significant potential to disrupt reservoir parameter estimates and
uncertainties in geophysical

inversion. In all form of geophysical inversion, the "effective noise" used in the data misfit absorbs effects
from approximate forward modelling in additional to environmental processing and measurement noise.
For risk assessment, inversions require parameter

uncertainties, and these are best approached from a Bayesian angle. But parameter uncertainty estimates
are dependent on the noise model at leading order. Modelling noise in particular can be strongly
correlated, and will corrupt parameter uncertainty estimates if the correlations are not taken into account.
In CSEM inversion, structural and resistivity parameters can be particularly difficult to disentangle, and
their separation is rather vulnerable to systematic components of the noise. We present several ideas to
manage the effect, two of which are easily incorporated into standard optimization and sampling schemes.
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Introduction

In the last decade or so, the controlled source electromagnetic (CSEM)dae has become a pop-
ular tool in the hydrocarbon exploration game. The method is naturally suitddtézting resistive
anomalies in the marine subsurface, hopefully due to the presence othyidon deposits, so regional
geological knowledge must be sufficient to exclude the possibility of higigistive rocks like evap-
orites, volcanics, or carbonates. Taken in conjunction with seismic dagefogical and structural
delineation, the tool is potentially a powerful discriminator between high andjkmsvsaturation. The
technique is a valuable complement to seismic methods, since these are wellthrimave difficulty in
detection of gas saturation in AVO applications.

Many articles have appeared to date outlining the general nature of thil @&dlisition framework
(see, e.g. the CSEM “special section” of Geophysics, vol 72, Ndt B)by now well known that CSEM
inversion is a challenging problem (Constable et al., 1987; Gunning ef04l0) 2not just because the
forward energy propagation is heavily dispersive and thus resoluéstraying, but also because the
subsurface response is poorly modelled by a weak—scattering (Bggrgxamation when the conceiv-
able range of resistivity variation of submarine rocks is several decaddeeed, subsurface resistors
behave almost as waveguides, so the overall field response in thaegeedaesistors is qualitatively
very different to typical background response caused by condustiales, hence the failure of weak
scattering theory. The imaging problem is thus controlled by both dispgykix&cs and strong nonlin-
earity, which, when combined with expensive forward models, makes tidgon qualitatively similar
to the difficult history matching problem in petroleum reservoir charactiiza

One of the main consequences of the quasi—-waveguide like energy flog subsurface resistors (if
present) is that received signals are largely controlled by the resisthitiress product (RTP) of
these resistors. This can be shown both numerically and (in 1D) analytically $teepest descent
approximations to the solutions (Loseth, 2007). Imaging for structure — xteacting thickness — is

thus very challenging in the absence of complementary information, like seigtmeation of resistor

boundaries.

These issues, being germane to the forward physics, affect botlariegg and Bayesian approaches
to inversion. But Bayesian approaches enable a probabilistically autstetement of what inversion
degeneracies or multimodalities imply about subsurface structure, anblate @mbrace multiple data
types with much more logical consistency. This is our preferred appréagther, an important goal of
modern Bayesian inversion methods is an assessment of the range m&untgef important reservoir
parameters, as a means of informing risk—management decisions. Typitalliltinvolve quantities
like gas saturation, reservoir thickness, or, more ambitiously, total hgdson—in—place. This is an-
other level of difficulty over and above trying to compute “maximum-likelihood&typrersion images,
for several reasons. Firstly, the strong nonlinearity means the podtigiabutions are rarely approx-
imately quadratic (“bowl shaped”) in parameter space, so local-linearizagiproaches to uncertainty
mapping are not useful. This means sampling methods like Markov—Chain \Zanl® or parametric
bootstrap type techniques must be used. These are computationally degnaiatevery many for-
ward models (MCMC) or maninversions(bootstrap) need to be computed. These methods have been
successfully demonstrated for 1D problems (Gunning et al., 2010; Glzn 2007),

A second challenge is that uncertainty estimates are dependent on thenaoisktoleading order
Loosely speaking, simple maximum-likelihood parameter estimates, in inverderpsahat are not too
nonlinear or degenerate, are roughly independent of estimated noie I8¢atisticians speak of such
parameters as being robustly estimated, or “insensitive to noise mis—sgemific8ut theuncertainty
of model parameters is always dependent on the noise model at leadergemen in kind problems. In
hard problems like CSEM, the nonlinearity and near—degeneracy maid@sagtar uncertainties rather
sensitive to the choice of the noise model.
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A pervasive difficulty is that forward models in geophysics virtually algvayake assumptions which
render faster computation possible, and errors resulting from thesmpissns are expected to be ab-
sorbed in the “effective” noise model. Examples in the CSEM context mighisbeof isotropic resis-
tivities, neglect of bathymetry, or approximation of 3D responses by 2DDomodels. These kinds
of modelling approximations usually lead to strongly correlated modelling emaisif the modelling
error dominates the overall instrumental and environmental noise, thalld\edfective” noise process
can then be expected to be fairly spatially correlated. The challenge isvid@estimates of parameter
uncertainty that are useful in decision making, that are not hopelessiypted by inadequacies in noise
modelling.

We illustrate several approaches to noise modelling which address thass, issing 1D isotropic
CSEM inversion as the basic engine from which inferences are to be made.

Theory

Bayesian maximum likelihood estimation is typically concerned with locating optimajetie func-
tions (log—posterior densities) which are a combination of data misfits anddistoibutions of model
parameters (Sambridge et al., 2006). Prior beliefs about layer resistiaieassembled from regional
geology, depositional considerations and upscaling characteristieg.aré usually right skewed distri-
butions (achieved by modelling log—resistivities), allowing smaller probabilitiesgistive rocks, and
truncated at the left by resistivity values around seawater. Thusymdtitad, a modelm in p parame-
ters, forward CSEM modd'(m ), and Gaussian nois€ (0, Cy), the joint Bayesian posterior (likelihood
L(d|m) x Gaussian priop(m) = N(m,, C,)) is maximised at the optimum of

X%ayes: (d— F(m))TCd_l(d — F(m)) + (m — mp)Tngl(m —my) (1)
Noise levels and correlations are contained in the “effective noise'tiamae matrixC,.

The usual (and reasonably demanding) approach to parameter imgeriaBayesian contexts is to
find all local minima of the log—posterior ( 1), estimate some uncertainty scalea¢camulate local
covariance matrices at each local minima), and use these as the basis @& gr bootstrapping
approach to computing parameter uncertainty. If the noise levels are estiomatedtly, one expects
the most likelysolution to havexgayesmin ~ n, and the suite of models representing the inversion
“uncertainty” to cause fluctuations ';{?%ayesgiven approximately by agg distribution (width=x /2p)
offset to the right bw%ayesymm An example, for independent Gaussian noiSg diagonal) is shown in
fig. 1.

With independent Gaussian noise, large data sets, and parsimonious podels) the fluctuation in
allowable misfit can be modestly tight, so the range of possible models estimatead pyoitedure can
be too narrow if the noise model contains correlated components, andageprby approximating
only by its diagonal (or an estimate thereof). With certain kinds of correlaiegsurements, posterior
parameter estimates should not central limit (i.e. enjol/+/n precision improvements) as the data set
increases. There is a clear and present danger of overly focdeegtice if the noise is not independent.

There are at least three possible approaches to parameter uncergtimgtion when error processes
are systematic or strongly correlated:

(1) Reduce theffectivenumber of data taes. Since correlated residuals contain partially redundant
information, the number of “true” effective independent measurementsdmagry much less than the
raw data count. Typically one either suppresses data, or uses all daténdigpendent, Gaussian)
error bars inflated by,/n/nefr. Based on toy linear problems where the noise is a sum of random and
systematic components, one can make good argumentsghatight to be set as

total noise power
. . n
systematic noise power

(2)
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Figure 1 Left: typical 1D stochastic models drawn from Bayesian posterior using Ki©Wbootstrap-
ping, showing strong resistor location correlations around marked laydfor the chosen layering,
these model samples represent the subsurface uncertainty conditipmalthe observed CSEM data
(not shown). Right: sampling fluctuations)'t@ayesrelative to known result from linear regression the-
ory for independent Gaussian noise.

This can be aerymodest number when the noise from systematics is strong.

(2) Explicitly try to extract the systematic components as modelled parametees¢hatconnected to
the earth model, but leave the random component reasonably equallibfgdausder a wider range of
earth models. Typically, all one does is augment the usual CSEM inversiohimeay with a forward
model like
d=F(m) + C’;/QX.mn +e€
N——
=XnN
whereX y is a linear regression design matrix for systematic noise component3 he prior distribu-
tion onm,, contains a parametetysexpressing the relative power of systematic noise to the noise level
of the uncorrelated component

(3) Try to absorb correlated residuals into a fully correlated noise steu¢ite. dense matrig’;). Use
of e.g. Wishart priors has been successful (Leonard and Hs@) i®%he context of linear regression
with exotic noise, but this is still probably too demanding to put inside a CSEMsimeloop.

The first two approaches have the advantage that they can be easifyarated into standard opti-
mization (Gauss Newton, Marquardt) and sampling algorithms (MCMC, bopjdtrat assume assume
fixed, diagonal forms for the noise.

Example

Here we illustrate the problem of estimating a reservoir layer thickness intdepnovith systematic
processing errors that infect the inling| field with a component that correlates; | E'| almost linearly

with offset, rather as it might in a problem with modelling errors from weak 8Rrosotropic effects.
Since the thickness is already hard to disentangle from the RTP, this kindaofles potential to
seriously bias a thickness estimate. In this example, the systematic error intdhgetiés enough to
cause seriously biased estimates if posterior uncertainties are computgdhasfall data set with an
unadjusted, independent noise model only. Figure 2 shows how theeishfencertainty in thickness
widens substantially if modelling of the systematic noise is introduced, using eftties first two ideas
above. Data are generated from a 250m resistor buried 850m below m(idlitkm water).
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Figure 2 Left: Inferred thickness marginal distribution of resistivity target, as a fumctd relative
tolerance of systematic errors in inling’| data, using quadratic{,, = 2) systematics with offset.
Curves are (i) redg,,, = 2, (ii) green,o,,s = 1, (iii) blue, 0,5 = 0.5. Right: very similar effects are
obtained by data set reduction by factors of 2 (error bar inflation 0y /nef as per option 1.

Conclusions

Mis—characterisation of the noise has significant potential to disrupvasparameter uncertainties in
Bayesian inversion approaches. Since practical inversions have tppsoximate forward models of
varying degree, modelling error gets absorbed into the overall ervoeps, and may have a strong sys-
tematic component. Such systematic components in the noise ought to be refidutembier inversion
uncertainties. Estimations of posterior parameter uncertainties must takeostedated error processes
into account. We have presented two relatively simple ideas to manage tbe béfth of which are
easily incorporated into standard optimization and sampling schemes.
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