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SUMMARY
Mis-characterisation of the noise has significant potential to disrupt reservoir parameter estimates and
uncertainties in geophysical
inversion. In all form of geophysical inversion, the "effective noise" used in the data misfit absorbs effects
from approximate forward modelling in additional to environmental processing and measurement noise.
For risk assessment, inversions require parameter
uncertainties, and these are best approached from a Bayesian angle. But parameter uncertainty estimates
are dependent on the noise model at leading order. Modelling noise in particular can be strongly
correlated, and will corrupt parameter uncertainty estimates if the correlations are not taken into account.
In CSEM inversion, structural and resistivity parameters can be particularly difficult to disentangle, and
their separation is rather vulnerable to systematic components of the noise. We present several ideas to
manage the effect, two of which are easily incorporated into standard optimization and sampling schemes.



Introduction

In the last decade or so, the controlled source electromagnetic (CSEM) technique has become a pop-
ular tool in the hydrocarbon exploration game. The method is naturally suited todetecting resistive
anomalies in the marine subsurface, hopefully due to the presence of hydrocarbon deposits, so regional
geological knowledge must be sufficient to exclude the possibility of highly resistive rocks like evap-
orites, volcanics, or carbonates. Taken in conjunction with seismic data forgeological and structural
delineation, the tool is potentially a powerful discriminator between high and lowgas saturation. The
technique is a valuable complement to seismic methods, since these are well known to have difficulty in
detection of gas saturation in AVO applications.

Many articles have appeared to date outlining the general nature of the CSEM acquisition framework
(see, e.g. the CSEM “special section” of Geophysics, vol 72, No. 2).It is by now well known that CSEM
inversion is a challenging problem (Constable et al., 1987; Gunning et al., 2010), not just because the
forward energy propagation is heavily dispersive and thus resolution destroying, but also because the
subsurface response is poorly modelled by a weak–scattering (Born) approximation when the conceiv-
able range of resistivity variation of submarine rocks is several decades. Indeed, subsurface resistors
behave almost as waveguides, so the overall field response in the presence of resistors is qualitatively
very different to typical background response caused by conducting shales, hence the failure of weak
scattering theory. The imaging problem is thus controlled by both dispersivephysics and strong nonlin-
earity, which, when combined with expensive forward models, makes the problem qualitatively similar
to the difficult history matching problem in petroleum reservoir characterization.

One of the main consequences of the quasi–waveguide like energy flow along subsurface resistors (if
present) is that received signals are largely controlled by the resistivity–thickness product (RTP) of
these resistors. This can be shown both numerically and (in 1D) analytically from steepest descent
approximations to the solutions (Loseth, 2007). Imaging for structure – i.e. extracting thickness – is
thus very challenging in the absence of complementary information, like seismic delineation of resistor
boundaries.

These issues, being germane to the forward physics, affect both regularizing and Bayesian approaches
to inversion. But Bayesian approaches enable a probabilistically coherent statement of what inversion
degeneracies or multimodalities imply about subsurface structure, and are able to embrace multiple data
types with much more logical consistency. This is our preferred approach. Further, an important goal of
modern Bayesian inversion methods is an assessment of the range of uncertainty of important reservoir
parameters, as a means of informing risk–management decisions. Typically this will involve quantities
like gas saturation, reservoir thickness, or, more ambitiously, total hydrocarbon–in–place. This is an-
other level of difficulty over and above trying to compute “maximum–likelihood” type inversion images,
for several reasons. Firstly, the strong nonlinearity means the posteriordistributions are rarely approx-
imately quadratic (“bowl shaped”) in parameter space, so local–linearization approaches to uncertainty
mapping are not useful. This means sampling methods like Markov–Chain MonteCarlo, or parametric
bootstrap type techniques must be used. These are computationally demanding, sincevery many for-
ward models (MCMC) or manyinversions(bootstrap) need to be computed. These methods have been
successfully demonstrated for 1D problems (Gunning et al., 2010; Chen et al., 2007),

A second challenge is that uncertainty estimates are dependent on the noisemodel to leading order.
Loosely speaking, simple maximum–likelihood parameter estimates, in inverse problems that are not too
nonlinear or degenerate, are roughly independent of estimated noise levels. Statisticians speak of such
parameters as being robustly estimated, or “insensitive to noise mis–specification”. But theuncertainty
of model parameters is always dependent on the noise model at leading order, even in kind problems. In
hard problems like CSEM, the nonlinearity and near–degeneracy makes parameter uncertainties rather
sensitive to the choice of the noise model.
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A pervasive difficulty is that forward models in geophysics virtually always make assumptions which
render faster computation possible, and errors resulting from these assumptions are expected to be ab-
sorbed in the “effective” noise model. Examples in the CSEM context might beuse of isotropic resis-
tivities, neglect of bathymetry, or approximation of 3D responses by 2D or1D models. These kinds
of modelling approximations usually lead to strongly correlated modelling errors, and if the modelling
error dominates the overall instrumental and environmental noise, the overall “effective” noise process
can then be expected to be fairly spatially correlated. The challenge is to provide estimates of parameter
uncertainty that are useful in decision making, that are not hopelessly corrupted by inadequacies in noise
modelling.

We illustrate several approaches to noise modelling which address these issues, using 1D isotropic
CSEM inversion as the basic engine from which inferences are to be made.

Theory

Bayesian maximum likelihood estimation is typically concerned with locating optima of objective func-
tions (log–posterior densities) which are a combination of data misfits and priordistributions of model
parameters (Sambridge et al., 2006). Prior beliefs about layer resistivities are assembled from regional
geology, depositional considerations and upscaling characteristics. They are usually right skewed distri-
butions (achieved by modelling log–resistivities), allowing smaller probabilities of resistive rocks, and
truncated at the left by resistivity values around seawater. Thus, withn datad, a modelm in p parame-
ters, forward CSEM modelF(m), and Gaussian noiseN(0, Cd), the joint Bayesian posterior (likelihood
L(d|m) × Gaussian priorp(m) = N(mp, Cp)) is maximised at the optimum of

χ2

Bayes= (d − F (m))T C−1

d (d − F (m)) + (m − mp)
T C−1

p (m − mp) (1)

Noise levels and correlations are contained in the “effective noise” covariance matrixCd.

The usual (and reasonably demanding) approach to parameter uncertainty in Bayesian contexts is to
find all local minima of the log–posterior ( 1), estimate some uncertainty scales (i.e. accumulate local
covariance matrices at each local minima), and use these as the basis for a MCMC or bootstrapping
approach to computing parameter uncertainty. If the noise levels are estimatedcorrectly, one expects
the most likelysolution to haveχ2

Bayes,min ≈ n, and the suite of models representing the inversion
“uncertainty” to cause fluctuations inχ2

Bayesgiven approximately by aχ2

p distribution (width≈ √
2p)

offset to the right byχ2

Bayes,min. An example, for independent Gaussian noise (Cd diagonal) is shown in
fig. 1.

With independent Gaussian noise, large data sets, and parsimonious models(p ≪ n) the fluctuation in
allowable misfit can be modestly tight, so the range of possible models estimated by this procedure can
be too narrow if the noise model contains correlated components, and we proceed by approximatingCd

only by its diagonal (or an estimate thereof). With certain kinds of correlatedmeasurements, posterior
parameter estimates should not central limit (i.e. enjoy∼ 1/

√
n precision improvements) as the data set

increases. There is a clear and present danger of overly focused inference if the noise is not independent.

There are at least three possible approaches to parameter uncertainty estimation when error processes
are systematic or strongly correlated:

(1) Reduce theeffectivenumber of data toneff. Since correlated residuals contain partially redundant
information, the number of “true” effective independent measurements maybe very much less than the
raw data count. Typically one either suppresses data, or uses all data with(independent, Gaussian)
error bars inflated by

√

n/neff. Based on toy linear problems where the noise is a sum of random and
systematic components, one can make good arguments thatneff ought to be set as

neff ≈ min

(
total noise power

systematic noise power
, n

)

(2)
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Figure 1 Left: typical 1D stochastic models drawn from Bayesian posterior using MCMC or bootstrap-
ping, showing strong resistor location correlations around marked layers. For the chosen layering,
these model samples represent the subsurface uncertainty conditionalupon the observed CSEM data
(not shown). Right: sampling fluctuations inχ2

Bayesrelative to known result from linear regression the-
ory for independent Gaussian noise.

This can be averymodest number when the noise from systematics is strong.

(2) Explicitly try to extract the systematic components as modelled parameters thatare unconnected to
the earth model, but leave the random component reasonably equally plausible under a wider range of
earth models. Typically, all one does is augment the usual CSEM inversion machinery with a forward
model like

d = F(m) + C
1/2

d X
︸ ︷︷ ︸

≡XN

.mn + ǫ

whereXN is a linear regression design matrix for systematic noise componentsmn. The prior distribu-
tion onmn contains a parameterσsysexpressing the relative power of systematic noise to the noise level
of the uncorrelated componentǫ.

(3) Try to absorb correlated residuals into a fully correlated noise structure (i.e. dense matrixCd). Use
of e.g. Wishart priors has been successful (Leonard and Hsu, 1992) in the context of linear regression
with exotic noise, but this is still probably too demanding to put inside a CSEM inversion loop.

The first two approaches have the advantage that they can be easily incorporated into standard opti-
mization (Gauss Newton, Marquardt) and sampling algorithms (MCMC, bootstrap) that assume assume
fixed, diagonal forms for the noise.

Example

Here we illustrate the problem of estimating a reservoir layer thickness in a problem with systematic
processing errors that infect the inline|E| field with a component that correlateslog |E| almost linearly
with offset, rather as it might in a problem with modelling errors from weak 3D or anisotropic effects.
Since the thickness is already hard to disentangle from the RTP, this kind of error has potential to
seriously bias a thickness estimate. In this example, the systematic error in the data set is enough to
cause seriously biased estimates if posterior uncertainties are computed using the full data set with an
unadjusted, independent noise model only. Figure 2 shows how the inferred uncertainty in thickness
widens substantially if modelling of the systematic noise is introduced, using eitherof the first two ideas
above. Data are generated from a 250m resistor buried 850m below mudline (in 1km water).
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Figure 2 Left: Inferred thickness marginal distribution of resistivity target, as a function of relative
tolerance of systematic errors in inline|E| data, using quadratic (Np = 2) systematics with offset.
Curves are (i) red,σsys = 2, (ii) green,σsys = 1, (iii) blue, σsys = 0.5. Right: very similar effects are
obtained by data set reduction by factors of 2 (error bar inflation by

√
n/neff as per option 1.

Conclusions

Mis–characterisation of the noise has significant potential to disrupt reservoir parameter uncertainties in
Bayesian inversion approaches. Since practical inversions have to use approximate forward models of
varying degree, modelling error gets absorbed into the overall error process, and may have a strong sys-
tematic component. Such systematic components in the noise ought to be reflectedin broader inversion
uncertainties. Estimations of posterior parameter uncertainties must take suchcorrelated error processes
into account. We have presented two relatively simple ideas to manage the effect, both of which are
easily incorporated into standard optimization and sampling schemes.
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