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SUMMARY
Inversion of CSEM data is a challenging problem for at least two reasons.  (1) The inverse problem is
significantly nonlinear in the subsurface resistivity parameters, and (2) very poor scaling results from the
strong absorption of the incident EM energy. We show not only that a Bayesian approach furnishes both
the extra information required to stabilise the inverse problem (a well-known fact), but also the little-
known fact that it provides a coherent method for estimating inferable resolution. This is demonstrated for
single models with spatial correlations, and also for model comparison within families of models with
variable spatial discretization. The Bayesian approach is thus the necessary key to understanding
uncertainty within models, but also uncertainty between models, model resolution, and multidisciplinary
data integration.



Introduction
In recent years, the controlled source electromagnetic (CSEM) technique has become a popular

tool in the hydrocarbon exploration game. The method is naturally suited to detecting resis-

tive anomalies in the marine subsurface, hopefully due to the presence of hydrocarbon deposits.

Sufficient geological knowledge must be available to exclude the possibility of highly resistive

rocks like evaporites, volcanics, or carbonates. Taken in conjunction with seismic data for geo-

logical and structural delineation, the tool is potentially a powerful discriminator between high

and low gas saturation. The technique is a valuable complement to seismic methods, since these

are well known to have difficulty in detection of gas saturation in AVO applications.

Many articles have appeared to date outlining the general nature of the CSEM acquisition

framework (see, e.g. the CSEM “special section” of Geophysics, vol 72, No. 2). In the domain

of applicability of the method, two main issues limit the usefulness of the technique. Firstly,

the heavily dispersive nature of the energy propagation destroys all bandwidth above a few

hertz, which automatically imposes severe restrictions on resolution. Secondly, the dynamic

range of conductivity from seawater to resistive anomalies (or deeper rocks), is usually at least

several decades, so, in an inverse-problem context, the subsurface response F (m) is very poorly

modelled as a “small” deviation from some “agnostic” reference model m0. In other words, the

Born approximation, so central to seismic imaging, is rarely very useful for real CSEM data.

This strong nonlinearity means the optimization surface is nearly always multimodal, badly

scaled, and contorted in shape.

These issues make meaningful 2 or 3 dimensional CSEM inversion a particularly difficult

problem. Since the problem is very poorly scaled, inverse approaches require additional terms to

stabilise or better-condition the iterations. For diverse reasons, the bulk of the inverse-theoretical

work done in the EM community is not fundamentally statistical in nature, but rather approaches

the stability problem using pragmatic Tikhonov-regularization methods. This introduces the

awkward problem of how to estimate and justify the free parameters in these regularizing op-

erators, and make meaningful statements about what these pieces imply about model resolution

and uncertainty.

These conceptual difficulties disappear if a Bayesian approach to the inverse problem is

taken. Modern Bayesian inference frameworks allow inverse problems to be stated in terms of

an inference problem for the posterior distribution of a suite of model parameters and possible

meta-parameters, and questions about resolution or uncertainty are answerable directly from

this posterior distribution. Further, since such statements are conditional on the chosen model, a

framework that enables sensible comparison of different models, or families of models - even of

varying dimensionality - is very useful. Such an apparatus is available in approaches variously

called Bayesian Model Selection, or Bayesian Mixture Modelling (Hoeting et al (1999)). A fur-

ther argument for Bayesian approaches is that they are easily the most natural way to introduce

knowledge from other data sources or professional expertise, with its requisite precision and

interdependencies etc, via additional likelihood terms or priors. This is important for CSEM,

since CSEM data is unlikely to be used in isolation for a major decision.

We illustrate here how two Bayesian approaches to the resolution problem in CSEM inver-

sion yield parsimonious, optimally resolved models for the test case of 1D CSEM data. The

theory here provides a more formal and satisfactory account of how to infer resolution than the

“discrepancy principle” (Farquharson and Oldenburg, 2004) of the well-known OCCAM code

(Constable et al, 1987). Extensions to higher dimensions will be natural.

Theory
Resolution is most effectively understood as an interaction between the particular spatial res-

olution of a inversion model, and the effective number of degrees of freedom which can be

meaningfully estimated from the data. There are two distinct approaches to resolution infer-

ence:
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• Firstly, if a particular “fine” spatial model m is supplemented by well chosen meta-

parameters μ expressing spatial correlation, the resolution is embodied in the way the

metaparameters control the local eigenvalue or singular value structure near the most-

likely points in the parameter space. Overfitted, or excessively deconvolved, models cor-

respond to a low-probability region of the meta-parameter posterior distribution. We em-

bed the meta-parameters μ in a multi-Gaussian correlated spatial prior N(mp, Cp(μ)) for

log(resistivity). Thus, with data d, a forward model F (m),and Gaussian noise N(0, Cd),
the joint Bayesian posterior (likelihood L(d|m) × prior p(m,μ)) is maximised at the

optimum of

2χ2
Bayes = (d−F (m))TC−1

d (d−F (m)) + (m−mp)TCp(μ)−1(m−mp) + log |Cp(μ)|

The balance between the smoothing (second) term and its log |Cp(μ)| normalisation deter-

mines the inversion resolution. This occurs naturally and without need to invoke “target”

values for the data-misfit contribution (first term). A related idea is to estimate μ by the

maximum of its marginal distribution (π(μ) ∼ ∫
L(d|m)p(m,μ)dm), sometimes called

the Empirical Bayes estimate (Mitsuhata, 2004).

• Resolution can be inferred by performing model-selection over a family of models with

variable spatial discretization. For ranking of model probabilities, we use the marginal

model likelihood (MML) π(k), obtained by integrating the Bayesian posterior density

over the model parameters mk;

π(k) =
∫
L(d|mk)p(mk)dmk.

This is sometimes called the evidence (Sambridge et al, 2006). In general, the integral

is quite difficult to perform, but approximations like the Laplace approximation are very

effective if the posterior is modestly compact (this requires, essentially, the determinant of

the Hessian at the global optimum). It is known that the Laplace approximation behaves

asymptotically like the celebrated Bayes Information Criterion (BIC) (Denison, 2002)

and thus the MML, like the BIC, has the required “Occamist” characteristic of favouring

the simplest model that adequately explains the data. We perform model comparison

by recursively splitting a very coarse vertical 2–layer model, retaining splits where they

lead to an improvement in the MML. This surprisingly simple idea yields solutions with

resolution where the sensitivity is greatest, and typically suppresses detail in the deeper

subsurface.

For both methods, a globalizing optimization strategy is important. We usually fire off a

suite of local optimizers, starting at suitably dispersed starting points. Some known symmetries

can be used to spread the starting points, but randomisation is also usually effective. Using only

the dominant optima is a respectable approximation for the integrals needed. Uncertainties in

the inferred parameters can be estimated from the covariances arising from local linearization

at modes, but usually these are too small: the dispersion between distinct solutions is usually

much greater, and that between alternative models may be greater still. Full assessment of

uncertainties is in-principle possible using MCMC methods, but these must be specially tailored

with proposal kernels suited to the multimodal posterior and poor scaling. It is important to

remember that the full posterior distribution embodies what can be claimed or inferred from

geophysical inversion, not just particular point estimates or moments of the posterior.

Example
A typical 1D CMP inversion using both meta-parameters and model-splitting is shown in Fig-

ures 1 and 2. Electric field amplitude CSEM data only is used to invert for structure, using three

frequencies (0.25, 0.75,1.25 Hz).
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Figure 1: Left; Typical 3-frequency CMP amplitude data used for CSEM inversion, with fit-

ted responses. Right: inversion using meta-parameters for smoothing a finer grid (red curve),

compared to green curve truth case.

Figure 2: Left; Bayesian model-selection cascade of models used to determine vertical resolu-

tion. Algorithm terminates at the lowest model. Right: inverted model (red) against known truth

case (green).

Both methods fit the data to the noise level satisfactorily. It is evident that neither of these

methods is able to justify detailed structure at much depth, and the hierarchical method will

clearly favour relatively coarse structures. For 1D models, even hundreds of data points (includ-

ing phase, more frequencies etc) are unlikely to justify more than 10–20 inferable degrees of

freedom.

The overhead is using these methods is very little compared to established methods. As

usual, the bulk of the work lies in computing forward responses and sensitivity (or Frechet) ma-

trices. The details above are easily incorporated into conventional Gauss–Newton schemes, with

the relevant determinants etc easily computed from the Hessian matrices available at the termi-

nation of the optimization passes. Some bookkeeping is required for the global optimizations

and the splitting schemes. The splitting schemes in particular can be rapid, since the models are

very low dimensional.

71st EAGE Conference & Exhibition — Amsterdam, The Netherlands, 8 - 11 June 2009



Conclusions
Multimodality and poor scaling are pervasive problems in CSEM inversion. Bayesian ap-

proaches provide a consistent framework for addressing resolution issues in CSEM problems,

and partially address the scaling problem. Optimal resolution can be extracted through either

model selection methods or continuous meta-parameters controlling resolution within a single

model. The meta-parameter spatial smoothing approach provides a rigorous basis for so–called

“Occamist” inversion, showing that parsimony is a natural consequence of a Bayesian formal-

ism. Multimodality is expressed through multiple peaks in the posterior probability surface, and

this can only be address through combined globalization and enumeration strategies. Typical 1D

CSEM data inverted in common–midpoint style suggest the data justifies only O(10) parameters

per midpoint.
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