The workflow

PCDs . P{t).1D
lexy(t) 3Dx1D PCDDiagnostic XrayCurve

RadOutput

Radiation transport TIXTLs _ T(E) 1D
XrayTransport Pinhole camera(t) TIXTLDiagnostic XrayCurve
ArayOutput 2Dx1D
- ; RadOutput

Analytic modeis

SourcePlasma

HotSpotOutput

S

CRITRs C(E) 1D
Tai's Swig C++ MSPEC(t) 2Dx1D CRITRDiagnostic XrayCurve

Hydra simulation Ay RadOutput

LaserPreheatRun
VisarlD

HydraOutput
(via Pyorick)

Shadowgram 2Dx1D
ne(x,y.t) 2Dx1D ShadowGram sgzﬁgutput

RadOutput

rad-MHD API

Gorgon simulation
GorgonRunner
GorgonOutput
(Via F2Py of

Jenning’s) User defined post Scalars and f(t), f(r,t)
processors . 4 Float, XrayCurve,
VisarAnaysis RadOutput
RunLIP
ProradRun

SetRunner.input data ensemble = Dict (List (Float,Int,Bool)) SetRunner.output data ensemble = Dict (List (RadOutput,XrayCurve))

Run integration
DemoHotSpotRunner (SetRunner)
DemoGorgonRunner (SetRunner)

All classes inherit AppRunner (HasTraits) class giving:
(1) Saved meta data state
(2) GUI editor
(3) CLI
(4) TraitsUI (type checking, initial value, label, help)
(5) str () method

This is the flow diagram of the workflow. Classes that implement the components of the workflow, and of the self described data (axis, labels, units,
description, etc.). Put in links to Sphnix docs.

General description of the software architecture

What has systematically been constructed over since | arrived at Sandia in 2016 is realization of a software architecure (maintained from the start) in Git
and documented using the Sphinx documentation system (http://s1008570.srn.sandia.gov:8080, using Markdown syntax in the source code to facilitate
this). It was developed using concepts of object oriented design in Python . Classes were most times, subclasses of HasTraits . This allowed for strict
variable typing & error checking (dramatically reducing parameter input errors), intial value, variables labels, and variable help. In addition to setting the
variables and objects from a CLI with error checking, TraitsUI provides an interactive GUI editor view of the object. This was enhanced by the creation
of the AppRunner class that supplemented Traits and TraitsUI to give:

1.
2
3.

saved and restored meta data state, so that data formats would be self descriptive and templates of application parameters can be retained

app type and app version with an version conversion facility to maintain backward version compatibility

provision of variables such as run_name, input_directory, and output_directory that are almost always needed, along with methods
suchas run(), save(), load(), save_results(), load_results(), plot(), default_output_file() ,b and save_figs() .
a better default GUI editor view, with fine grain control of Traited parameters that are displayed and common methods displayed as buttons.

a better default __str__ () method with more fine grain control of what is printed.

The AppRunner class is not only used for applications but also for data objects. It is used to run Hydra and Gorgon in the following way. A generic Hydra
run deck is constucted that is controlled by a set of variables. A set of parameters is imported into this run deck, first thing, from the saved state of an
AppRunner class constructed with these parameters as edited properties (from both the CLI and GUI editor). In fact there is a template class
HydraRun that supplements the AppRunner class with common methods such as srun() , submit() , archive() ,and restore() , along
with the infrastrure to inject the parameters into the Hydra deck. A similiar method can now be implemented to run Gorgon since Chris Jennings has
refactored the code to give it an input deck.

A general API was constucted for rad-hydro simulation results (for Gorgon , Hydra , and a more general implementation for analytic construction). The
interface grid format is based off of tvtk ,a Traited form of VTK . A class was constructed, XrayTransport , that uses this API for its input, then
performs the radiation transport using the methods developed by Tai in C++ and made available using Swig to Python . This code also directly
calculates MSPEC and Pinhole imaging dianostics. The output also has been piped into subsequent applications that calculate PCD, TIXTL, and CRITR
synthetic diagnostics. Many other diagnostics are anticipated to be developed in the near future. Where appropriate C, C++,and FORTRAN , such as for
the re-gridder of block structured grids (which was done in C . An example of the GUI editor for the Hydra laser preheat run follows:

-

run parameters geometry laser gas misc run parameters geometry FUR DaFAMEtErs geometry laser gas mise
base case for NIF (neopentane, 1 atm) backwall length (cm): 1.0 harmaonic of the laser beam: 3
laser beam radius 0.0375
upper vacuum length (cm): 0.4 fem)
laser F-number. 8.0
can botiom thickness (cm): 0.01
faser lens diameter {om): 62.5
can outer radius (cm): 0.4325
& " . laser prepulse energy (kJ): 0.06
description: can inner radius (cm): 0.4225 :
can wall thickness (micron): 100.0 laser main pulse energy (iJ): 24
can EOScode: 3 laser prepuise length (ns): 1.0
laser dwell length (ns): 5.0
can bottom type: wall laser pulse length (ns): 4.0
lower vacuum length (cm): 0.4 end of laser pulse (ns). 10.2
Bk bk Mucow Cont: read laser pulse from fie.
restart label (if needed): hydr00000 run parameters geometry laser
window shape: elliptical SE PSS SRS i st — gas prossure (paf); 147
base generator deck: omega_base_v11.p
e A window radius (cm): 0.3 power multipher for laser pulse from file: 1e+12 as lermperatuee (K} 300.0
base run name: nif_run_005 reference taser time o start puise: volusme fraction Ar; 0.01

run parameters file name:

Inlfmeg_runs/python/run_parameters/nif_run_005.npz

window thickness (micron): 0.79

window bow {cm): 0.002

laser spot patterm from file:

wotume fracton Ma: 0.0

wolume fraction He: 0.0

laser spot patter file name: nif_quad_spot_hyd volme fraction necpentana: 0,99
asher t ickness = i -
Save parameters " AE IRl 0-002 voluma fraction propana: 0.0
washer bottom thickness (cm): 0.001 volume fracsion D2: 0.0
Load parameters gas EOG cove: 3
number window zones: 7 Hop
Print input parameters
number top washer zones: 12
Generate debug
Restart debug Help
fun parameders geometry lase gas misc
Submit flag for debug output
Submit restart do MHD:
» » Help button result Sl
|can outer radius (cm) Mo be 2 flost.
Help jcan hnﬁﬁ'ﬁnﬁbf_&wﬁm A
jcan wall thickness [May be any valae. Help
appty multipliers:
can EOS code: Msoimlwmmmzﬂnmmmkcm 3=NIF mutipier: 0,001
sexpoxy, 4=Lexan opaciy
hottom pwali=solid hiice rest of czpsule, window=wmdow mmo mage of 1o0p. opao—no wall Suctivity mulSpher: ~ 10000.0
vacoum length [iused only f hack wmdow = on cam) ™ i -
back windaw inddds (.01 micron Ti coating 1o back window maxreiax for ALE: 15
redaomem for ALE: 1.75

winduw shape Must be o kegal valoe

window radins (em). Muss be 3 ot

window thickness [Muszbe a float 1 diglc for ALE: 015
Mkhnu-k [Musz be a float 1 density fioor [gmicc): 12-05
washer top thickness |Mus: be o float

auto relaxmesh
auto set gramv 1o RELAX

PMinst be 2 oot

window Must be an micger (int or long). stop time (ns): 20.0

" ey ey fime dump interval during laser (ns): 0.1

—— _ | electron thermal flux mit: 0.05
Must be 2n inteper {int or lomg)

Iy be sy valoe.

window EOS code: [0-ongmal, 2-polmmde from Kyle Cochrane Help
harmenic of the baser Must be an misger (mt or kongl

Many of the applications are parallized asynchronously, through MPI or Posix subprocess forks, using the bsync package developed by John Field for
the LLNL data science effort.

The data classes have many common mathematical and utility methods defined such as: plot() , convolve() , integrate(), __mult__ (),
_add__() ,and _str_ ().

The ultimate goal of this infrastucture is embodied in the SetRunner class. This class captures the complete workflow. It also has the ensemble
construct, Distribution objects, where distributions can be given for a set of input parameters. Ensembles can then be generated from these
distributions, and the workflow executed for each member of the ensemble. The sythetic diagnostics for each member of the ensemble are then available
for analysis using statistical and MLDL methods.

This infrasture has already been used to generate movies of GXD and MSPEC images for MagLIF preheat Hydra simultions, and to generate stochastic
ensembles of 1D VISAR measurements for statistical and MLDL applications. It is also an integral part of critical deliverables for a REHEDS LDRD on
applications of MLDL for Z, and a CIS LDRD on the same subiject.

The instructions on how to set up the environment can be found in pysnl/docs/build_soe.txt . It is highly recommende that this infrastructure be
executed via a Jupyter notebook served from a Docker image set up using build_soe. txt .

	page_1
	page_2

