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Abstract

Using high resolution numerical simulations of the two-dimensional Navier-Stokes
equations, we evaluate a conceptually simple approach to modeling gravity currents
traveling over a bottom boundary of varying slope. We consider a rectangular com-
putational domain, which allows for simple and efficient implementation of the equa-
tions and boundary conditions. Rather than implementing a complete coordinate
transformation, the varying slope is modeled through the introduction of a spatially
varying gravity vector. Our methodology is validated through studies of mass and
energy conservation. The propagation velocity of the current and qualitative fea-
tures of the flow are also found to be consistent with experimental observations of
gravity currents traveling down constant or varying slopes.
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1 Introduction

Gravity currents are formed when a mass of relatively heavy fluid intrudes
laterally into a lighter ambient fluid. Density–driven currents are due to com-
positional, salinity or temperature variations and find applications in rivers
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flowing into the sea, lava flows and storms in the atmosphere (see Simpson
[1]). Suspended particles may also be responsible for the density difference
between heavy and ambient fluid, giving rise to so–called particle–driven cur-
rents or turbidites. The particles then settle relative to the fluid and deposit
at the bottom surface. Such currents arise mostly in geophysical contexts.
For example, the maximal distance traveled by air masses laden with vol-
canic ash constitutes a great security concern [2]. Also, the deposits left by
underwater turbidites may indicate the presence of oil and gas fields ([3], [4]).
Recent studies of particle clouds have furthermore underlined the importance
of particle–laden gravity currents in the context of the dumping of waste into
rivers and oceans [5].

Numerical simulations of particle–laden gravity currents have been performed
using the shallow–water equations by, among others, Garćıa [6] and Bonnecaze,
Huppert & Lister [7]. Such simulations consider layer-averaged quantities and
rely on a number of empirical relations to estimate the effects of pressure, tur-
bulence and bottom friction. More recently, direct numerical simulations of
two and three–dimensional density and particle–driven gravity currents have
been performed by Härtel, Meiburg & Necker [8] and Necker et al. [9], thus
eliminating the need for such empirical coefficients. However, these simula-
tions are still limited to relatively low Reynolds number (O(103)) and simple
geometries.

Several experimental studies of density or particle gravity currents have been
performed in the last half century. In particular, Britter & Linden [10] studied
the progression of a constant flux of heavy fluid traveling down a constant
slope and Beghin, Hopfinger & Britter [11] investigated the evolution of finite
volume releases in the same context. Both sets of authors noted that larger
slope angles caused increased mixing between light and heavy fluid and slightly
faster propagation of the current’s front. They also observed that the head of
the current was slighty raised above the bottom surface when traveling over an
inclined plane. Finite volume releases of particle-laden currents were studied
in a shallow ambient by Bonnecaze, Huppert & Lister [7] who noted, among
other things, that a bore could form from the reflection of the light fluid on the
back wall. This bore was seen to overtake the head of the current and to alter
significantly the dynamics of the flow. Experiments on particle-laden currents
flowing down slopes of varying angles were conducted by Garćıa & Parker [12]
and Garćıa [13]; these authors used a constant inflow of particle–laden fluid
and focused mostly on the particle deposition patterns.

Many physical applications of gravity currents involve irregular bottom bound-
aries. Turbidites often travel down continental shelves with varying slopes [14].
Bores may form as gravity currents run over sizable obstacles [15]. Also, in
order to provide an accurate description of deposits left by repeated gravity
currents, the geometry of earlier deposits must be taken into account in sim-
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ulations of latter currents [16]. Such currents may be eroding or depositing,
depending on the geometry of the boundary, and may be responsible for cer-
tain geological structures such as the formation of underwater canyons and
levees [14].

Our objective is to develop a conceptually simple approach which allows to
simulate complex geometries, but still uses fast, highly accurate numerical
methods. We focus here on two–dimensional simulations of the Navier-Stokes
equations applied to gravity currents propagating over a lower boundary of
varying slope angle. In most applications, the bottom geometry is slowly vary-
ing. We here use the fact that the curvature of the topography is usually small
to develop simulations that are simpler and faster than full mappings of the
Navier-Stokes equations and which do not require structured meshes or grid
generation. We first review the governing equations of motion in §2. We then
introduce the numerical model used to simulate the flow in §3 before discussing
the validity of our simulations in §4. Our conclusions are presented in §5.

2 Governing Equations

We consider situations where the density difference between heavy and light
fluid is relatively small (< 5%). We may therefore use the Boussinesq approxi-
mation and consider density variations in the buoyancy term only. We assume
that the density of the fluid is linearly related to the concentration, C̄, of either
a solute or suspended particles, ρ̄ = ρ̄0(1 + αC̄), where α is constant and the
bars denote dimensional quantities. When simulating turbidites, we consider
small Reynolds number particles with settling speed Ūs. We denote by h̄ the
initial heavy fluid height and by C̄0 the initial solute or particle concentration.
We restrict our study to high Reynolds number flows, Re = ūbh̄/ν̄ ∼ O(103),
where ūb and ν̄ are a characteristic velocity and viscosity of the current. Buoy-
ancy forces are therefore balanced by inertial forces and a typical value of ūb
is

ūb =
√
ḡαC̄0h̄

where ḡ is the gravitational acceleration.

In order to keep the computational time manageable, we consider two–dimensional
gravity currents. The velocities parallel and perpendicular to the bottom sur-
face are denoted by u1 and u2, respectively, and the corresponding coordinates
by x1 and x2. We introduce a streamfunction ψ such that u1 = ∂x2ψ and
u2 = −∂x1ψ and a vorticity field ω = ∂x1u2 − ∂x2u1. The angle between the
bottom surface, x2 = 0, and the horizontal is denoted by θ, as shown in figure
1. We non–dimensionalize the Navier-Stokes equations using the height of the
heavy fluid, h̄, the buoyancy velocity, ūb, and the initial concentration C̄0 and
obtain
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∇2ψ = −ω (1)

∂tω + u1∂x1ω + u2∂x2ω =
1

Re
∇2ω − ∂x1(cos θC)− ∂x2(sin θC) (2)

∂tC + ∂x1 [(u1 + Us sin θ)C] + ∂x2 [(u2 − Us cos θ)C] =
1

Pe
∇2C, (3)

where Us = Ūs/ūb and Pe = ūbh̄/κ is the Péclet number, with κ the diffusion
constant associated with C̄. To facilitate numerical convergence [8], we set
Pe = Re, or equivalently κ = ν. The diffusion of C is not expected to be
dynamically significant and this overestimate of κ only has a negligible impact.

Initially, the fluid is at rest, ψ = ω = 0, and C = 0 everywhere except in
a rectangle in the bottom left corner, 0 ≤ x1 ≤ xfr, 0 ≤ x2 ≤ 1 where
C = 1, see figure 1. The initial length of the current, xfr, and the height of
the computational domain, H, may be specified arbitrarily. We use a no–slip
boundary condition at the top and bottom walls and a slip boundary condition
at the left and right walls which allows the use of a Fourier transform of ψ
along x1.

ψ = ∂x2ψ = 0 at x2 = 0, H, ∂x1x1ψ = ψ = 0 at x1 = 0, L,

where L is the length of the computational domain.

The concentration flux at the boundary, F , is set to 0 at the top and left walls

F = CUs cos θ +
1

Pe
∂x2C = 0 at x2 = H (4)

F = −CUs sin θ +
1

Pe
∂x1C = 0 at x1 = 0. (5)

However, particles are allowed to deposit at the bottom and right walls so that
F = k̂ · n̂UsC at x2 = 0 and x1 = L, with k̂ = (− sin θ, cos θ) a vertical unit
vector and n̂ the unit outer normal at the boundary. The boundary conditions
on C are therefore equivalent to setting the diffusive flux to 0:

∂x2C = 0 at x2 = 0, ∂x1C = 0 at x1 = L. (6)

The accumulation of particles at the bottom boundary may be found by inte-
grating in time the particle flux out of suspension.

2.1 Energy balance

From the velocity and concentration fields, we compute an energy budget of
the flow, in a manner similar to that of Necker et al [17]. Consistent with the

4



Boussinesq approximation, density variations influence the potential energy,
Ep, but not the kinetic energy, K,

Ep =
∫
V
~x · k̂CdV, K =

∫
V

1

2
~u · ~udV

where V is the domain of the simulations and ~x the position vector so that
the vertical height of a point is y = ~x · k̂. The time–derivative of Ep satisfies

dEp
dt

=
∫
V

[
D~x

Dt
· k̂C + y

DC

dt

]
dV

=
∫
V

[
~u · k̂C +∇ · (y(Usk̂C +

1

Pe
∇C))− (UsC +

1

Pe
k̂ · ∇C)

]
dV

=
∫
V
~u · k̂CdV +

∮
S
yFdS −

∫
V
UsCdV −

1

Pe

∮
S
Ck̂ · n̂dS (7)

where S is the surface bounding V . Similarly, the time–derivative of the kinetic
energy is (see Batchelor [18]).

dK

dt
=
∫
V

1

2

D~u · ~u
Dt

dV =
∫
V

[
−∇ · (P~u) +

1

Re
~u · ∇2~u− ~u · k̂C

]
dV

=−
∫
V

2

Re
¯̄s : ¯̄sdV −

∫
V
~u · k̂CdV (8)

where ¯̄s = (1/2)(∇~u + (∇~u)T ). Therefore, the total energy present in the
system is

Ep +K
∣∣∣
t=0

=Ep +K + (9)∫ t

0

[
−
∮
S
yFdS +

1

Pe

∮
S
Ck̂ · n̂dS +

∫
V

(
UsC +

2

Re
¯̄s : ¯̄s

)
dV
]
dt

(I) (II) (III) (IV).

The term (I) accounts for the loss of potential energy through particle deposi-
tion; (II) indicates the variation in potential energy due to diffusion of C and
is typically negative as larger concentrations diffuse upward; (III) reflects the
loss of potential energy as particles in suspension travel downward, and (IV)
measures viscous dissipation.

3 Numerical approach

In order to simulate turbidity currents over a broad range of situations, we
allow the angle between the horizontal and the bottom surface, θ, to depend on
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Fig. 1. Schematic of the coordinate system used in the simulations. The angle θ
between the x1-axis and the horizontal is allowed to vary with x1 to model varying
slopes. The dark region corresponds to the initial position of heavy fluid and is con-
strained by 0 ≤ x1 ≤ xfr, 0 ≤ x2 ≤ 1. The height and length of the computational
domain are H and L, respectively.

x1. Our coordinate system (x1, x2), illustrated in figure 1, is therefore related
to Cartesian coordinates, x in the horizontal and y in the vertical, through

x=
∫ x1

0
cos θ(x′1)dx′1 + x2 sin θ(x1) (10)

y=−
∫ x1

0
sin θ(x′1)dx′1 + x2 cos θ(x1). (11)

For the sake of simplicity, we have neglected corrections to equations (1)-(3)
resulting from the curvilinear nature of this coordinate system. These correc-
tions are of order x2dθ/dx1 and we therefore restrict our study to systems
where ξ = Hdθ/dx1 � 1 to ensure that the neglected terms are everywhere
small. Note that here ξ represents the ratio of the height of the computational
domain to the radius of curvature of the bottom surface; our simulations are
expected to be valid only for relatively large curvature radii. Effectively, we
thus consider a spatially varying gravity vector and use a rectangular compu-
tational domain.

Our numerical method has several advantages. First, the use of highly resolved
numerical simulations rather than layer averaged equations allows for direct
measurements of quantities such as the bottom stress, dissipated energy and
front velocity. Moreover, using a streamfunction–vorticity formulation satis-
fies the continuity equation exactly and does not require any approximation of
the pressure field. In contrast, previous simulations aimed at modeling gravity
currents have either assumed a hydrostatic pressure directly [19] or through
layer averaged equations [13], [20]. Third, the use of a varying gravitational
vector in a rectangular computational domain allows for a simple, flexible and
efficient implementation of the governing equations and boundary conditions
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for any bottom surface, provided ξ � 1. In particular, spectral methods may
be used, thereby improving the accuracy of the simulations at little computa-
tional cost. Although an exact mapping between the physical and computa-
tional domains is possible, its implementation is comparatively cumbersome
and computationally extensive [21]. We investigate the importance of the ne-
glected curvature terms by tracking conserved quantities such as mass and
energy in §4.

The numerical integration of equations (1)-(3) is performed in a manner similar
to that of Härtel, Meiburg & Necker [8]. We use sixth order compact finite
differences for C everywhere and for ψ along x2 and a Fourier transform for ψ
in the x1-direction; near the boundaries, the derivatives are accurate to third
order [22]. A third order Runge-Kutta integrator is used to march equations
(2)-(3) forward in time [8]. Equation (1) is then solved by taking a Fourier
transform of the vorticity in the x1-direction and using 5-point compact finite
differences in x2 [22]. The velocity field is obtained by differentiating ψ. We
use an adaptive time-step to satisfy the CFL and diffusive stability criteria
while minimizing computation time.

4 Numerical results

A sample of the concentration (at three different times) and vorticity fields
obtained via our numerical simulations is shown in figures 2a-c and 2d, re-
spectively. Here the current is initially propagating down a 5◦ slope, figure 2a,
before reaching a horizontal region, figure 2b and eventually losing its struc-
ture, figure 2c. At early times, we observe a well defined current, with a head
significantly higher than the trailing fluid. Vortices are being shed above and
behind the head, mostly rotating counterclockwise. These vortices are seen to
entrain ambient fluid and their concentration is reduced relative to that of the
main current. The head of the current is here slightly overhanging, trapping
a region of clear fluid below heavy fluid, a typical feature of gravity currents
traveling down an incline, [10], [11]. The vorticity is greatest in the vortices
shed above the head and near the bottom, no–slip wall. Clockwise vortices of
lesser intensity are also seen to form within the current.

4.1 Convergence

We first verify the numerical convergence of our simulations by tracking the
total energy of the system, using equation 9, while varying the grid size. We
fix the geometry of the domain to θ = 10◦ for x1 ≤ 7, θ = 0◦ for 9 ≤ x1,
and θ linearly varying in the intermediate region. We set H = 1 and L = 32
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Fig. 2. Concentration field of a density–driven gravity current at t = 2, (a), t = 14
(b) and t = 30 (c). The dark regions correspond to high solute concentration. d)
Vorticity field of the same current, the dark regions correspond to negative (clock-
wise) vorticity and the pale regions to positive vorticity. The current displayed
here traveled down a complex geometry: θ = 5◦ for x1 ≤ 7, θ = 0◦ for x1 ≥ 9
and θ varying linearly in the intermediate region. Other governing parameters are
Re = Pe = 2, 200, H = 3, L = 32 and xfr = 4

and denote by nx1 and nx2 the number of points along the x1 and x2-axis,
respectively.

Numerical instabilities are generated near the front of the current and along
the most vigorous vortices when relatively coarse grids are used (nx1 ≤ 257,
nx2 ≤ 33 for Re = Pe = 2, 200). However, increasing slightly the resolution
ensures that the flow remains numerically stable. The number of grid points
required to avoid the formation of instabilities is seen to increase with Re, but
as a general rule, instabilities may be avoided provided the smaller structures
of the flow, which scale as Re−1/2, can be resolved.
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Fig. 3. Time dependence of the total energy present in the system for different
grid sizes. The initial energy is normalized to 1. The number of points in the
streamwise and perpendicular directions are denoted by nx1 and nx2 , respectively.
The geometry modeled here is that of a varying slope: θ = 10◦ for 0 ≤ x1 ≤ 7,
θ = 0◦ for 9 ≤ x1 ≤ 32, and θ decreasing linearly in the intermediate region. These
computations simulate density–driven currents (Us = 0) and were performed with
Pe = Re = 2, 200, H = 1, L = 32 and xfr = 4.

Figure 3 shows the total energy as a function of time for various mesh sizes. It
may be seen that doubling nx1 provides only slightly better energy conserva-
tion. In contrast, the number of points along the x2-axis (nx2) is determinant
in avoiding the generation of an energy surplus. As the grid is refined, the
error progressively drops below 1%, even after 40 time units when the current
has lost most of its structure. For nx1 ≥ 1025 and nx2 ≥ 193, the error on the
total energy improves only slightly with further mesh refinement. The quali-
tative features of the current also remain virtually unchanged: vortices appear
well resolved and the structure and velocity of the current are independent of
mesh size.

4.2 Influence of the radius of curvature

We now investigate the influence of ξ = Hdθ/dx1 on the conservation of the
total mass of the heavy fluid present in our simulations. In order to focus on
the impact of the corner geometry, we vary only the transition length, i.e.
the length over which the bottom slope decreases from θ = 10◦ to θ = 0◦.
Figure 4 shows the time evolution of the total mass of heavy fluid present in
the computational domain for different values of ξ. At early times, t < 3.9,
the current overlies a region of constant slope angle and the mass is conserved
nearly exactly. As the current reaches the corner region, mass is effectively
lost due to the neglect of curvature terms. As the transition from sloping
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Fig. 4. Time dependence of the total mass of heavy fluid for corners of various
sharpness. The ratio of the height of the domain to the curvature radius is denoted
by ξ = Hdθ/dx1. For all cases shown, the initial and final angles are 10◦ and 0◦,
respectively, except for ξ = 0 where the slope angle is constant at θ = 10◦. These
computations simulate density–driven currents (Us = 0) and were performed with
Pe = Re = 2, 200, H = 1, L = 16 and xfr = 4.

to horizontal bottom occurs more abruptly (larger ξ), larger mass losses are
observed. Because mass losses are mostly restricted to the region overlying the
bottom corner, the local error, which may be approximated as the total mass
loss divided by the approximate mass of fluid in the corner, increases even
more abruptly with ξ. However, the total mass of the system remains greater
than 99% of its initial value due to the opposing effects of increased curvature
and reduced transition length.

For transition lengths comparable to the initial length of the heavy fluid, xfr,
the local error is estimated to remain of the order of a few percent, e.g. 3%
for ξ = 0.09 and 1% for ξ = 0.04. Once the head has reached the horizontal
region, the total mass of heavy fluid fluctuates between its initial value and
the minimum observed in figure 4, as vortices cross over to the horizontal
region. At later times, the quantity of heavy fluid overlying the curved region
decreases and the total mass returns to a value close to the initial mass.

4.3 Front velocity

Figure 5 shows the time–dependence of the front velocity of currents traveling
over a horizontal surface, a constant slope angle θ = 10◦ and a varying slope
where θ = 10◦ for x1 ≤ 3.5 and θ = 0◦ for x1 ≥ 5.5. After a brief acceleration
period, currents traveling over a bottom surface of constant angle (θ = 0◦ or
θ = 10◦) quickly achieve a constant velocity. As expected, currents traveling
down an inclined slope propagate faster than those spreading on a horizon-
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Fig. 5. Time dependence of the velocity of gravity currents propagating over a
horizontal surface (o), varying slope with initial angle θ = 10◦ and ξ = 0.06 (∗)
and constant slope angle θ = 10◦ (+). The dashed lines indicate the time when
the varying slope current overlies the curved bottom. These computations simulate
density-driven currents and were performed with Re = Pe = 2, 200, H = 1, L = 16
and xfr = 2.

tal surface. The velocity of the current propagating along a varying slope is
initially equal to that of a current traveling down a 10◦ slope. As the current
reaches the corner, shown as the first dashed line in figure 5, its velocity is
reduced. By the time the head of the current overlies a horizontal surface,
second dashed line, its velocity approaches that of a current traveling along
a horizontal bottom. However, the velocity of the current traveling down a
varying slope remains slightly larger than its horizontal counterpart. The in-
ertia of the current thus affects its velocity over a significant time period and
both the final and initial slope angles must be considered to determine the
instantaneous velocity of the current.

At longer times, the velocity of all currents decreases as the height of the head
is reduced. When observing animations of our simulations, a bore caused by
the reflection of the light fluid on the left wall is seen to propagate downstream.
Similar bores have been observed experimentally by Bonnecaze, Huppert &
Lister [7] and were seen to travel faster than the head of the current. Although
the presence of large vortices in the wake of the current renders the systematic
tracking of the bore difficult, it is usually seen to overtake the head (at t = to).
This significantly reduces the height of the front of the current, which in
turn causes the front velocity to decrease. Along an inclined bottom, the bore
catches up with the head earlier, to = 17, than along a horizontal surface, to =
25, allowing the horizontal current to travel faster than its inclined counterpart
for t > 18. For the varying slope current, the bore velocity appears to be almost
unchanged as the current reaches the horizontal region. The bore therefore also
overtakes the head near t = 17, well before it overtakes the horizontal current.

11



a) t = 4 b) t = 8

h
ei

gh
t

c) t = 12 d) t = 25

h
ei

gh
t

x1 x1

Fig. 6. Snapshots of the evolution of the concentration of heavy fluid propagating
along a horizontal surface (above), varying slope with initial angle θ = 10◦ (center)
and constant slope θ = 10◦ (bottom). The dark regions correspond to high concen-
trations of heavy fluid. The boundary of the computational domain is outlined in
black. Pictures are taken at: a) t = 4, before the varying slope current reaches the
corner, b) t = 8, as it reaches the horizontal region, c) t = 12, shortly afterward and
d) t = 25, when the currents have lost most of their structure. The arrows indicate
the approximate location of the bore. The simulations shown here were performed
with Re = Pe = 2, 200, H = 1, L = 16 and xfr = 2.

It should be noted that such bores only overtake the head for certain initial
lengths of the heavy fluid, i.e. 1 ≤ xfr ≤ 3. For other values of xfr, the vortices
shed behind the head appear to disperse the bore before it has time to reach
the head of the current. Also, if the height of the computational domain is
increased to H ≥ 2, the backflow of light fluid is weaker and no bores are
observed.

Figure 6 compares the progression of gravity currents in three different geome-
tries: horizontal surface, varying and constant slope. As is to be expected, the
current traveling down a varying slope initially resembles that traveling down
a constant slope (figure a). In particular, the vortices shed behind the head are
more vigorous than for currents propagating over a horizontal surface, thereby
increasing the amount of mixing between light and heavy fluid. However, as it
reaches the horizontal region, the varying slope current is progressively mod-
ified and begins to resemble a horizontal current. Smaller vortices are shed
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Fig. 7. Time–dependence of the energy distribution of particle–driven currents trav-
eling down a constant slope θ = 10◦ (dotted line) and a varying slope (solid line).
a) Total energy (O), potential energy (o), and potential energy of deposited par-
ticles (∗). Note that here the height of level 0 is taken to be the lowest point of
the computational domain. b) Kinetic energy (∗), dissipated energy (o) and energy
lost owing to particle settling (O). All the energy terms are computed according to
equation 9. The computations shown here were performed with Re = Pe = 2, 200,
Us = 0.02, H = 3 and xfr = 4.

behind the head and the velocity is reduced, in agreement with the behavior
of horizontal currents, (figures b-c). At long times, it may be seen that vig-
orous mixing has occurred in the inclined regions; however, very little heavy
fluid has been transported into the upper half of the computational domain
in regions overlying a horizontal surface (figure d). The bore caused by the
reflection of the light fluid, indicated with black arrows, may be seen to trail
the head of the inclined and varying slope currents in figure c and has already
overtaken the head at t = 25 (figure d).

4.4 Energy distribution

Figure 7 shows the different terms of the energy budget (equation 9) of
particle–driven currents traveling down a constant or varying slope. In fig-
ure 7a, the potential energy, shown as (o) is calculated relative to the lowest
point of the computational domain, thus giving an initial energy three times
larger to the current traveling down a constant slope than to that on a varying
slope. Particles reaching the bottom boundary retain their potential energy,
(∗), which therefore is no longer available to the gravity current. A large frac-
tion of the total initial energy is lost through this mechanism, particularly for
constant slope currents, rendering the conversion of potential to kinetic en-
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ergy rather inefficient. In the horizontal section of the varying slope current,
deposited particles have zero potential energy.

In figure 7b, we plot the kinetic, dissipated and settling energy for the same
two currents. Initially, the varying slope current travels over an inclined region
and the energy distribution is the same for both currents. As the varying
slope current reaches the horizontal region, its velocity is reduced and its
kinetic energy is seen to become significantly smaller than that of the inclined
current. Similarly, the dissipated energy of the varying slope current increases
more slowly once the current overlies the horizontal region, the vortices shed
behind the head being weaker in that region. However, the potential energy lost
through particle settling is virtually unaffected by the geometry, as particles
travel approximately the same distance relative to the fluid. The energy gained
by the system through the action of particle diffusion is not shown here as it
remained less than 1.2% of the total energy throughout the simulations.

5 Discussion

We have performed two–dimensional numerical simulations of gravity currents
propagating over slopes of varying angle. Our computations were seen to be
consistent with numerical results obtained by previous authors in simpler ge-
ometries [8], [9]. The main qualitative features of the flow observed in our
simulations also agree well with experimental descriptions of gravity currents,
such as the formation of a bore [7], the speed variation of the nose of the
current as it reaches the horizontal region and the entrainment of ambient
fluid by currents traveling over an inclined bottom [11]. Provided the radius
of curvature of the bottom surface is much larger than the height of the com-
putational domain, i.e. ξ = Hdθ/dx1 � 1, our approach allows the simulation
of an arbitrary bottom geometry. Despite neglecting the curvature terms, our
simulations were seen to conserve mass within 1% and energy within 3% for
ξ ≤ 0.09. Complex three–dimensional geometries may also be modeled through
the use of a spatially varying gravity vector and will be the subject of future
research. In particular, currents traveling through channels may be simulated
using a three-dimensional extension of the approach presented here.

To the best of our knowledge, the influence of particle resuspension in tur-
bidity currents has not yet been investigated via highly resolved numerical
simulations. Our model may easily be extended to include a non–zero particle
flux at the bottom boundary, and future research will focus on characterizing
the influence of particle reentrainment on the dynamics of gravity currents.
We anticipate from observations of the bottom shear stress that the angle
of inclination will be a dominant factor in determining whether a current is
predominantly eroding or depositing. Direct numerical simulations of parti-
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cle resuspension in complex three–dimensional geometries will hopefully allow
for a more complete and realistic description of gravity currents and their
deposits.

The advantage of high resolution numerical simulations over layer averaged
models lies in the absence of empirical relations characterizing the effects of
dissipation, turbulence or fluid entrainment. Precise estimates of quantities
such as the bottom shear stress, fluid entrainment and turbulent dissipation
may be computed directly from our simulations. However, numerical stability
considerations render exceedingly slow the simulation of very high Reynolds
number currents (Re ∼ 107) such as those appropriate in geophysical con-
texts. A possible avenue for future research would be to combine these two
approaches, using high resolution numerical simulations for Re ∼ 2, 000 to
determine the coefficients needed in layer–averaged simulations or turbulence
models. Such simplified models may then be used to simulate high Reynolds
number flows.
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