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High-resolution numerical simulations of resuspending gravity
currents: conditions for self-sustainment
F. Blanchette,1 M. Strauss,2 E. Meiburg,1 B. Kneller,3 M.E. Glinsky4

Abstract. We introduce a computational model for high-resolution simulations of particle-
laden gravity currents. The features of the computational model are described in detail,
and validation data are discussed. Physical results are presented that focus on the in-
fluence of particle entrainment from the underlying bed. As turbulent motions detach
particles from the bottom surface, resuspended particles entrained over the entire length
of the current are transferred to the current’s head, causing it to become denser and po-
tentially accelerating the front of the current. The conditions under which turbidity cur-
rents may become self-sustaining through particle entrainment are investigated as a func-
tion of slope angle, current and particle size, and particle concentration. The effect of
computational domain size and initial aspect ratio of the current on the evolution of the
current are also considered. Applications to flows traveling over a surface of varying slope
angle, such as turbidity currents spreading down the continental slope, are modeled via
a spatially varying gravity vector. Particular attention is given to the resulting particle
deposits and erosion patterns.

1. Introduction

Gravity currents are flows generated when a predomi-
nantly horizontal density gradient is present in a fluid and
hydrostatic pressure differences cause the heavy fluid to
spread underneath the light fluid. In geophysical con-
texts, the density difference between the current and the
ambient fluid is often due to the presence of suspended
particles which act as the current’s driving force. Such
particles also settle relative to the fluid and may deposit
at the bottom edge of the current. In particular, the
dynamics of particle-laden gravity currents are relevant
to ash-laden volcanic flows (Sparks et al. 1991), crys-
tal laden flows in magma chambers (Hodson 1998) and
turbidity currents, i.e. underwater currents in which the
excess density is provided by suspended sediment (Simp-
son 1997).

Erosion by turbidity currents is largely responsible for
the creation of submarine canyons on continental slopes
(e.g. Pratson & Coakley 1996). Turbidity currents are
the most significant agents of sediment transport into the
deep sea, creating accumulations that include the Earth’s
largest sediment bodies (Normark et al. 1993). They
also constitute a hazard to marine engineering installa-
tions such as oil platforms, pipelines and submarine ca-
bles (Krause et al. 1970). Natural turbidity currents oc-
cur infrequently and unpredictably in remote and hostile
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environments, and tend to be destructive of submarine
monitoring equipment (e.g. Zeng et al. 1991). Conse-
quently they are observed only rarely and generally by
indirect means only (Hay et al. 1982; Hughes-Clarke et
al. 1990). Laboratory and numerical experiments thus
constitute essential means of investigating these impor-
tant large scale natural phenomena.

Particle-laden gravity currents have been studied in-
tensively in the past four decades. Turbidity currents
are non-conservative in that they entrain ambient fluid
through turbulent mixing, and deposit sediment as tur-
bulent motions decay. They may also erode sediment
from the bed, thus producing self-sustaining (“auto-
suspending” or “ignitive”) currents (Parker et al. 1986;
Pantin 1991, 2001). Simplified analytical models have
been suggested to describe density currents (Huppert &
Simpson 1980) and the asymptotic limit of small parti-
cle concentration was considered by using density-driven
gravity currents as a known background flow (Hogg et
al. 2000). Experimental studies of the progression of
particle-laden currents with finite volume (Bonnecaze
et al. 1993) or constant flux (Garćıa & Parker 1993)
were performed, and particular attention was given to
the resulting deposits. Layer-averaged numerical mod-
els have been suggested by Bonnecaze et al. (1993) and
Garćıa & Parker (1993). Such simplified models require
a number of closure assumptions regarding bottom fric-
tion, bottom shear stress, fluid entrainment and front ve-
locity. More recently, highly resolved two- and three-
dimensional simulations computing fluid flow from first
principles have successfully described particle-laden grav-
ity currents (Necker et al. 2002). Several features of
the flow, such as energy and particle concentration dis-
tribution may easily be computed from these simulations
and significantly fewer closure assumptions are required
in such models. For those reasons, a similar approach is
used in the present study to model resuspending gravity
currents.

The geometry of the surface over which currents prop-
agate determines their long term behavior. For density
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currents, experimental studies of the influence of the slope
angle were performed by Britter & Linden (1980) and
Beghin et al. (1981). Particle-laden currents traveling
down a broken slope were investigated by Garćıa (1993)
owing to their relevance to turbidity currents spreading
down the continental shelf before reaching a relatively
flat ocean bottom. Complex geometries were recently in-
cluded in highly resolved simulations via the inclusion of
a spatially varying gravity vector in a rectangular com-
putational domain (Blanchette et al. 2004). If a cur-
rent is spreading over an erodible bed, the geometry of
the base may allow the current to resuspend sufficient
particles so that its mass and velocity increase as it pro-
gresses down slope. This phenomenon is responsible for
the destructive power of avalanches (Hutter 1996). Self-
sustaining turbidity currents are known to occur in the
oceans where they may travel over hundreds of kilome-
ters, as exemplified by the Grand Banks turbidity current
of 1929 (Heezen & Ewing 1952).

The flux of resuspended particles as a function of flow
and particle parameters is particularly difficult to es-
timate. Several empirical models have been suggested
(Smith & McLean 1977, Garćıa & Parker 1991, 1993), but
their applicability remains limited and they must be used
with caution. Direct numerical simulations have been em-
ployed to study the lift-off of particles in plane Poiseuille
flow (Choi & Joseph 2001), but such simulations are so
far limited to a fairly small number of particles arranged
in regular patterns (Patankar et al. 2001). At present, it
is fair to say that a complete understanding of resuspen-
sion from an irregular bed of particles has not yet been
achieved. However, because reentrainment of particles is
critical in the long-term behavior of gravity currents, it
must be taken into account despite the limitations inher-
ent in empirical models derived from experimental mea-
surements.

Our current study focuses on extending our earlier
high-resolution simulations of non-resuspending turbid-

Figure 1. Schematic of the coordinate system used in
our simulations. The angle θ between the x1-axis and the
horizontal is allowed to vary with x1 to model varying
slopes. The dark region corresponds to the initial posi-
tion of the heavy fluid and is constrained by 0 ≤ x1 ≤ xf ,
0 ≤ x2 ≤ 2. The height and length of the computational
domain are H and L, respectively.

ity currents (Necker et al. 2002) to situations where re-
suspension is significant in order to investigate the depo-
sitional and erosional properties of such currents. Par-
ticular attention will be given to the conditions required
for a particle-laden current to exhibit a snow ball effect.
Specifically, we ask under which conditions a current be-
comes self-sustaining depending on parameters such as
particle size and concentration, current height and slope
angle. Our model and numerical approach are presented
in §2. We describe our results in §3, and the implications
of our findings are discussed in §4.

2. Model Description
2.1. Governing Equations and Relevant Parameters

We consider currents in which the particle concentra-
tion is relatively low, so that particle-particle interactions
may be neglected. The density difference between the
current and the ambient is thus typically small and we
may use the Boussinesq approximation (e.g. Spiegel &
Veronis 1960), where density variations appear only in
the buoyancy term. We use a continuum approach, where
the density of the suspension, ρ̄, is related to the particle
concentration by volume, C̄, through ρ̄ = ρ̄f+C̄(ρ̄p−ρ̄f ),
where ρ̄f and ρ̄p are the fluid and particle density, respec-
tively, and the bars indicate dimensional quantities. Par-
ticles are assumed to be transported by the fluid and to
settle relative to the fluid with velocity Ūs in the direction
of gravity.

The work by Necker et al. (2002) showed that for
flow over a horizontal bottom topography, two- and three-
dimensional simulations yield very similar results regard-
ing the front propagation velocity and the spanwise av-
eraged deposit profile. For this reason, we restrict our
attention to two-dimensional systems. We eliminate pres-
sure terms by considering a stream function-vorticity de-
scription of the fluid motion. Denoting the coordinate
parallel to the bottom surface by x1, that perpendicu-
lar by x2 and the corresponding velocities by u1 and u2

respectively (see figure 1), we introduce a stream func-
tion ψ satisfying u1 = ∂ψ/∂x2 and u2 = −∂ψ/∂x1 and a
vorticity function ω = ∂u2/∂x1 − ∂u1/∂x2.

We use the initial half-height of the suspension reser-
voir, h̄, as a length scale, and the initial particle con-
centration, C̄0, as a concentration scale. As a typical
velocity, we consider the buoyancy velocity

ūb = (gh̄C̄0R)1/2, (1)

where g is the gravitational acceleration and R = (ρ̄p −
ρ̄f )/ρ̄f . We thus obtain the following non-dimensional
governing equations (Necker et al. 2002)

∇2ψ = −ω (2)

Dω

Dt
=
∇2ω

Re
− ∂(C cos θ)

∂x1
− ∂(C sin θ)

∂x2
(3)

DC

Dt
+ Us

(
∂(C sin θ)

∂x1
− ∂(C cos θ)

∂x2

)
=
∇2C

Pe
, (4)

where we use the notation D/Dt = ∂/∂t + u1∂/∂x1 +
u2∂/∂x2 and where Us = Ūs/ūb, Re = ūbh̄/ν̄ is the
Reynolds number and Pe = ūbh̄/κ̄ the Péclet number,
with ν̄ the fluid viscosity and κ̄ the particle diffusion con-
stant. Note that the only driving force of the flow comes
from horizontal variations of C.
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It should be pointed out that, in principle, one can ac-
count for the force exerted by the particles onto the fluid
in two different ways. In the first approach one considers
the conservation equations for the suspension, i.e., the
combined fluid/particle system. In this case, only exter-
nal forces acting on the suspension should be considered,
such as the action of the buoyancy force on the density
field of the suspension. Internal forces acting within the
suspension, such as the drag force between fluid and par-
ticles, are not considered separately in this case. This
approach was taken by Necker et al. (2002), and is also
pursued here. Alternatively, one may consider the fluid
and the particles separately. In this case, the conserva-
tion equation for the constant density fluid contains a
term that accounts for the drag force exerted by the par-
ticles on the fluid, but a separate buoyancy force does
not appear in the equation. In that sense the drag force
and the buoyancy force are equivalent to each other. This
second approach was taken, for example, by Bosse et al.
(2004).

Our simulations aim at reproducing as closely as pos-
sible the physical conditions prevailing in large turbidity
currents. We therefore elected to simulate currents in
which water is the suspending fluid, i.e. ρ̄f = 1g/cm3

and ν̄ = 10−6m2/s. We consider particles of density ρ̄p =
2.5g/cm3 (R = 1.5) and typical diameter d̄ = 100µm, val-
ues appropriate for sandy turbidity currents such as those
forming many submarine fans (Normark et al. 1993). To
compute the particle settling speed we employ the empir-
ical formula of Dietrich (1982), Ūs = (WgRν̄)1/3, where

W = 1.71× 10−4

(
gRd̄3

ν̄2

)2

, if λ < −1.3

= 10p(λ), otherwise,

with λ = log10(gRd̄3/ν̄2) and p(λ) = (−3.76715 +
1.92944λ− 0.09815λ2 − 0.0057λ3 + 0.00056λ4). To com-
pute the buoyancy velocity, we use a typical particle con-
centration of C̄0 = 0.5% and height of approximately
h̄ = 1.6m, which results in a non-dimensional particle
settling speed of Us = 0.02.

The above parameters correspond to a current
Reynolds number of order 106, which is well beyond the
current reach of direct numerical simulations. As Re in-
creases, smaller length scales must be resolved, which in
turn implies shorter time steps. However, as will be seen
below in §3.1 and 3.2, providedRe > O(1, 000), variations
in Re only have a small effect on the overall features of the
flow, cf. Parsons & Garćıa (1998). For this reason, most
of the simulations to be discussed below will be carried
out with a reduced Reynolds number ReT � Re which is
kept in the range 1, 000 < ReT < 10, 000. This reduced
Reynolds number can be interpreted as a simple way to
model the effects of small-scale, unresolved flow struc-
tures. Our focus in the current investigation is on small
particles with negligible inertia, whose velocity is given
by the fluid velocity and a superimposed settling veloc-
ity. Hence it is reasonable to assume that the small-scale,
unresolved flow structures will affect the transport of par-
ticles in the same way as the transport of fluid (Shraiman
2000), so that we set the value of the reduced Péclet num-
ber PeT equal to that of the reduced Reynolds number.
Note that all other dimensionless parameters are kept at
their original values for the typical turbidity current de-
scribed above. We wish to remark that, while turbulence
models have been developed for variable density (Speziale

1991, Choi & Garćıa 2002) and particle-laden flows (El-
ghobashi & Abouarab 1983, Hagatun & Eidsvik 1986,
Zhang & Reese 2001, Hsu et al. 2003 and others), to
the best of our knowledge there are no models that can
accurately capture the complex physics in the non-dilute
layer next to a resuspending particle bed.

We use a lock-release model, where heavy fluid is ini-
tially confined to a small region, 0 ≤ x1 ≤ xf and
0 ≤ x2 ≤ 2. The initial length of the current, xf , may
be varied but was usually kept at xf = 2. For reasons of
numerical stability, the initial concentration profile was
smoothed over a few grid points (typically 6) using an
error function centered at x1 = xf in the horizontal and
at x2 = 2 in the vertical. The fluid is initially at rest,
ψ = ω = 0 and starts moving at t = 0.

In order to model complex geometries, we use a spa-
tially varying gravity vector (Blanchette et al. 2004). A
curvilinear coordinate system is thus simulated but sec-
ond order curvature terms are neglected. The resulting
approximation is expected to be valid if the ratio of the
height of the flow to the radius of curvature of the bot-
tom surface is everywhere small. We restrict our study
to smoothly varying bottom surfaces to ensure that the
neglected curvature effects remain small. We use a rect-
angular computational domain and enforce a no-slip, no
normal flow condition at the top and bottom boundaries,
ψ = ∂ψ/∂x2 = 0, and a slip, no normal flow condition
at the left and right walls, ψ = ∂2ψ/∂x2

1 = 0. The lat-
ter conditions allow for the use of fast Fourier transforms
in the x1-direction which provide high accuracy to our
numerical scheme.

The particle concentration flux at the boundaries, F ,
is set to zero at the top and left walls. At the right wall,
which effectively is never reached by the heavy current,
particles may deposit, but no resuspension is allowed so
that F = −CUs cos θ. However, particles are allowed to
deposit and reenter suspension at the bottom boundary:
F = (−CUs cos θ + EsUs), where Es is a measure of the
resuspension flux as discussed below. Unresolved tur-
bulent motions are assumed to be responsible for resus-
pending particles near the bottom boundary. The influx
of particles due to resuspension is therefore modeled as a
turbulent diffusive flux, as small scale turbulent motions
bring deposited particles into the suspension. As com-
pared to the frequently employed strategy of distributing
the added particles equally over the entire height of the
current, this diffusive flux approach represents a more
realistic approximation of the physically complex resus-
pension process. The height of the deposit, d(x1, t), may
be found by integrating the particle flux over time

d(x1, t) =
C̄0

σ

∫ t

0

(CUs cos θ |x2=0 − EsUs)dt,

where σ is the particle volume fraction in the bed, taken
to be a constant σ = 0.63 (Torquato et al. 2000).
Note that the corresponding porosity of the deposit is
1− σ = 0.37.

To evaluate the resuspension flux, EsUs, we use the
empirical formula derived by Garćıa & Parker (1993) for
turbidity current experiments, which relates the resus-
pension flux to the particle Reynolds number and bottom
shear velocity. We consider an erodible bed composed of
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particles identical to those in suspension. A measure of
the vigor of the resuspension is given by Z, which, fol-
lowing Garćıa & Parker (1993), is defined as

Z =
u∗

Us
Re0.6

p if Rep > 2.36,

Z = 0.586
u∗

Us
Re1.23

p if Rep ≤ 2.36

where u∗ is the shear velocity at the bottom wall and Rep
is the particle Reynolds number

u∗ =

(
1

ReT

∂u

∂x2

∣∣∣∣
x2=0

)1/2

, Rep =
d̄(gd̄R)1/2

ν̄
. (5)

The lower and upper branches of Z reflect the different
settling dynamics of low and high particle Reynolds num-
bers, respectively. The resuspension flux, EsUs, is then a
threshold function of Z,

Es =
1

C̄0

aZ5

1 + a
0.3
Z5

, (6)

with a = 1.3 × 10−7. Notice that the normalization of
Es by the initial particle concentration renders the effect
of resuspension more significant for dilute suspensions.
Also, Es may not exceed 0.3/C̄0, thus providing a satu-
ration mechanism.

Thus, at the top and left boundaries the diffusive flux
is equal to the settling flux, it is zero at the right wall and
it is equal to the resuspension flux at the bottom surface:

CUs cos θ +
1

PeT

∂C

∂x2
= 0 at x2 = H, (7)

−CUs sin θ +
1

PeT

∂C

∂x1
= 0 at x1 = 0, (8)

∂C

∂x1
= 0 at x1 = L, (9)

∂C

∂x2
= −PeTUsEs at x2 = 0. (10)

Modeling resuspension as a turbulent diffusive flux
has the inconvenience of injecting energy into the cur-
rent through particle diffusion: particles are lifted upward
by diffusive effects without a corresponding energy loss.
For small inclination angles and particle settling speed,
(θ ≤ 2◦, Us ≤ 0.005), this diffusive energy input may
significantly affect the dynamics of the flow. For flat sur-
faces and small particle settling speeds, a more detailed
description of the turbulence, such as that provided by
a K − ε model (Speziale 1991), may help to account for
this energy input by decreasing the turbulent kinetic en-
ergy and shall be investigated in the future. However, for
larger slope angles, the potential energy lost or gained by
the current through the deposition or resuspension of par-
ticles located higher than the downstream bottom bound-
ary is much larger than that gained through particle dif-
fusion. The dynamics of the flow are therefore dominated
by the potential energy of deposited or resuspended par-
ticles and our model is expected to adequately describe
currents evolving over sufficiently large slopes. Similarly,
for large settling speeds, the energy lost through parti-

cle settling is dominant and our approach is expected to
correctly capture the main features of the flow.

2.2. Numerical Approach

The numerical integration of equations (2)-(4) is per-
formed in a manner similar to that of Härtel, Meiburg &
Necker (2000). We perform a Fourier transform for ψ in
the x1-direction and use sixth order compact finite dif-
ferences for other derivatives, except near the boundaries
where the derivatives are accurate to third order (Lele
1992). A third order Runge-Kutta integrator is used to
march equations (3)-(4) forward in time (Härtel et al.
2000). The velocity field is obtained by differentiating
ψ. We use an adaptive time-step to satisfy the Courant-
Friedrichs-Levy and diffusive stability criteria while min-
imizing computation time. We solve the governing equa-
tions over a rectangular domain described by 0 ≤ x1 ≤ L,
0 ≤ x2 ≤ H, with typical values L = 24 and H = 4 and
a grid of size 1025×385. The flow is found to be unaf-
fected by the choice of L as long as the tip of the current
remains more than one non-dimensional unit away from
the right wall. We investigate the influence of H in the
following section.

Large concentration derivatives near the bottom
boundary may result from the modeling of resuspension
as a diffusive flux. A finer grid is thus required near the
bed than in other areas of the computational domain.
To accelerate computations, we have implemented an un-
evenly spaced grid in the x2 direction. By considering
a Taylor series expansion, we generalized the compact fi-
nite differences formulas presented in Lele (1992) to allow
for the use of a varying ∆x2. An example of the result-
ing formula used to compute a first derivative is shown
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Figure 2. Time-dependence of the front position of a
density current (Us = 0) traveling over a horizontal sur-
face for various values of the reduced Reynolds number.
For ReT ≥ O(1, 000), the front velocity becomes nearly
independent of ReT . Other parameters are xf = 2,
H = 4, L = 12 and PeT = ReT .
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x1
Figure 3. Sample of the concentration (a) and vorticity (b) of a particle-driven current traveling over a
surface with an inclination angle θ = 5◦, at t = 7.5 computed via our numerical model. In (a), the color
code is: 0.1 < C ≤ 0.5 yellow, 0.5 < C ≤ 0.8 green, 0.8 < C ≤ 1 red, 1 < C ≤ 3 cyan and 3 < C black.
In (b), positive (counterclockwise), zero and negative (clockwise) vorticity are shown in red, green and
blue respectively. The simulation parameters are H = 4, L = 24, xf = 2, Us = 0.02, Rep = 3.83 and
ReT = PeT = 2, 200.
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in the appendix. The obtained formulas are sixth order
accurate and their local error scales as the sixth power
of the local ∆x2. To determine the position of the grid
points, xj2, we evenly space grid points on a stretching
variable 0 ≤ sj ≤ 1 and use a mapping function of the
form (Fletcher 1991)

xj2 = H
tanh(α(sj − 1)) + βsj + tanh(α)

tanh(α) + β

where typical values of the coefficients are α = 3 and
β = 0.32. These values yield ∆x2 = 0.0028 and ∆x2 =
0.026 near the bottom and top wall, respectively, with
a continuous variation in the central region. Validation
information will be provided as part of the next section.

3. Simulation Results

We show in figure 3 typical concentration and vorticity
fields associated with a particle-driven current computed
via the model presented in §2. Here the current is trav-
eling over a surface with a relatively large slope angle,
θ = 5◦, and is therefore predominantly erosional. Resus-
pension increases the particle concentration near the bot-
tom boundary (blue and black zones) to a level exceeding
the initial concentration C = 1. Vortices are shed behind
the head of the current and form nearly circular regions
of non-zero particle concentration (yellow and green in
figure 3a) embedded in ambient fluid. Such vortices gen-
erate mixing with ambient fluid, causing the particle con-
centration to decrease below its initial value. They are
also responsible for a significant fraction of the viscous
energy dissipation and therefore act to reduce the kinetic
energy of the current. The largest vorticity is found near
the bottom boundary due to the no-slip boundary con-
dition. The bottom shear stress is sufficiently large to
cause particles to be reentrained. Behind the head of the
current, vortices are seen to vertically mix the particle
concentration. Fluid in the rear of the current tends to
catch up with the front (Härtel et al. 2000), causing high
particle concentrations to develop near the head.

3.1. Influence of the Reduced Reynolds and Péclet
Numbers

We begin by studying the impact of the turbulent
Reynolds number used in our simulations on the main fea-
tures of the flow. Figure 2 shows the time evolution of the
position of the front of a density current (Us = 0) travel-
ing over a horizontal surface. For relatively small reduced
Reynolds numbers, ReT < 1, 000, the front velocity in-
creases significantly with ReT . However this dependence
becomes negligible for larger reduced Reynolds numbers.
For sufficiently large values of ReT , other qualitative fea-
tures of the flow, such as the shape and number of vortices
shed behind the head or the size of the head, were also
observed to be nearly independent of ReT , which vali-
dates the use of a reduced Reynolds number, provided
ReT > 1, 000.

The value of ReT only has a week influence on our
resuspension model. The non-dimensional bottom shear
velocity near a solid wall, u∗, is known to decrease loga-
rithmically with increasing Reynolds number (Barenblatt
1993), which tends to reduce resuspension for large values

of ReT . This may be understood by noting in equation
(5) that u∗ ∼ 1/ReT so that even though larger ReT
generate larger ∂u/∂x2, the net effect of increasing the
Reynolds number is to decrease u∗. However, because
of the logarithmic dependence of u∗ on ReT , little effect
was observed in our simulations. The above resuspen-
sion model also depends on PeT , as particles resuspended
from the bed are distributed over a layer of thickness
δr ∼ Pe

−1/2
T . The influence on resuspension of PeT is

analogous to that of the ratio, r0, of the particle concen-
tration near the bed to the average concentration in the
current of layer averaged models (Parker et al. 1986). A
suitable value of PeT can be determined from experimen-
tal measurements of r0. Data provided by Garćıa (1994)
suggest that r0 = 2, which is approximately reproduced
in our simulations for PeT = 2, 200, a value which will be
used in the remainder of this paper. Further comparisons
between our simulations and experiments are discussed in
the next section.

It should be noted that quantitatively similar results
were obtained from a cruder resuspension model. In pre-
liminary simulations, the diffusive flux at the bottom
boundary was set to zero, and resuspended particles were
simply added uniformly over a layer of uniform thickness,
δr ≈ 0.1, near the bottom boundary. The added mass of
resuspended particles was computed at every time step,
Mr(x1) = EsUs∆t, and the concentration was increased
in the resuspension layer

C(x1, x2, t) = C′(x1, x2, t) +Mr/δr, if 0 < x2 < δr

where C′ was obtained by advancing in time equations
(2-4). The general features of the flow agreed well with
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Figure 4. Comparison of the position of the front of
a density current as a function of time measured ex-
perimentally by Huppert and Simpson (1980) (o) with
that computed via our simulations (solid line). In non-
dimensional form, the parameters used are: H = 5.87,
C0 = 0.0096, xf = 5.21, Re = 6300 and experiments
are non-dimensionalized using typical length and time
L = 7.5cm and t = 0.89s. There are no free parameters
in the simulations.
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those observed when particles are resuspended through
a diffusive flux. The dependence on ReT was similar in
both models and increasing δr was analogous to reducing
PeT . Keeping in mind that even the strategy of distribut-
ing resuspended particles over the entire current height
has been successfully used in layer averaged models (cf.
Garćıa 1994), it can be hence be concluded that the dom-
inant features of the flow, and in particular whether or
not a flow is self-sustaining, are largely independent of
the details of the resuspension model.

3.2. Comparison with Experiments

We present in this section a comparison between our
numerical simulations and experimental data published
in the literature. We first show in figure 4 the measured
length of a density current (Us = 0) as a function of time
and compare it to our simulations. The experimental re-
sults displayed here were obtained by Huppert & Simpson
(1980) and we used corresponding governing parameters
in our simulations. In particular, the non-dimensional
height of the container is H = 5.87, which ensures that
the influence of the top surface on the propagation of the
current is minimal. The time-dependent position of the
front, and consequently the speed of density current, is
seen to be accurately reproduced by the simulation. Ex-
periment and simulation are seen to agree well for more
than 30 non-dimensional time units, by which time the
current has lost most of its structure. This comparison
demonstrates the ability of the simulations to reproduce
the front velocity.

t
=

10
.8

t
=

4.
6

x1

Figure 5. Progression of a particle-laden current with
governing parameters identical to those of the current
shown in figure 9a of Bonnecaze et al. (1993). The ar-
rows indicate the position of the front recorded in the ex-
periment. In non-dimensional form, the parameters used
are: H = 2, Us = 0.03, xf = 1.14, Rep = 1.8 and exper-
iments are non-dimensionalized using typical length and
time L = 7cm and t = 0.64s. The experimental Reynolds
number is Re = 7600; simulations were performed with
a reduced value ReT = 2200.

We proceed with a comparison of the progression of
particle-laden currents. In this context, experiments are
constrained by the necessity to maintain particles in sus-
pension before the lock is released. Therefore, they are
usually performed in a shallow ambient, and with a free
surface. The fact that we model the top surface as a
no-slip wall rather than a free surface is then expected
to cause more substantial discrepancies between experi-
ments and simulations. We show in figure 5 simulations
computed for identical parameter values as in the exper-
iments of Bonnecaze, Huppert and Lister (1993), figure
9a. Here the concentration of a particle-laden current is
shown at two different times. The arrows indicate the
front position recorded in the experiment at correspond-
ing times. The experiments show some three-dimensional
turbulence and were performed at higher Reynolds num-
ber (≈ 7, 600) than our simulations (ReT = 2, 200). Nev-
ertheless, the concentration field shown in figure 5 ex-
hibits good agreement with the experiments, which fur-
ther justifies the use of a reduced Reynolds number value.
In particular, the general shape, length, and consequently
velocity, of the current are rather well reproduced. The
bore described by Bonnecaze et al. (1993) due to the
reflection of light fluid off the back wall may also be ob-
served in our simulations and is responsible for the sep-
aration between the suspension and the left wall. In our
simulations, the bore appears to travel somewhat faster
than in the corresponding experiments. The difference
in bore velocity is likely due to our assumption of a no-
slip top boundary rather than a free surface. Our model
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Figure 6. Comparison of the normalized deposit height
(the total volume of the deposit is set to one) obtained ex-
perimentally by DeRooij & Dalziel (2001) (dashed line)
with that obtained via our simulations (solid line). In
non-dimensional form, the parameters used are: H = 2,
Us = 0.02, xf = 0.75, Rep = 1.05 and experiments
are non-dimensionalized using typical length and time
L = 13.25cm and t = 1.64s. The experimental Reynolds
number is Re = 10, 000; simulations were performed with
a reduced value ReT = 2, 200.
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Figure 7. a) Time dependence of the front velocity, uf , for different values of the computational do-
main height, H for a fixed initial heavy fluid height of 2. The dependence of the front velocity on H is
relatively weak for H ≥ 4. b) Time dependence of the front velocity for different inclination angles θ
for both shallow, H = 2, and deep, H = 4, ambients. In these simulations, we consider density currents
(Us = 0) propagating over a horizontal surface with ReT = PeT = 2, 200 and initial length xf = 2.
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therefore does not accurately reproduce the effects of the
light fluid backflow. However, with the exception of the
progression of the bore, the main features of the particle
driven current are adequately captured by our model and
we therefore expect than in a deep ambient, where no
bore is present, our model would describe particle-laden
currents more accurately, as was the case for density cur-
rents. It should be noted that in the experiments, the
bottom surface was a solid wall and we therefore pre-
vented any resuspension below the original level of the
the bottom wall in our simulations.

We compare in figure 6 the deposit resulting from a
particle-driven current to that obtained via our simula-
tions. Here the experimental results of DeRooij & Dalziel
(2001) are compared to a computed deposit for a current
with corresponding parameters. Our simulations again
make use of a reduced Reynolds number (2,200 com-
pared to 10,000 in the experiment) and are purely two-
dimensional while the experiments were conducted in a
channel of width comparable to its height. The results
are seen to be in fairly good agreement as to the ex-
tent and elevation of the deposit. Differences are largest
near the left hand wall and are probably attributable to
variations in the initial conditions: in the experiments
particles are kept in suspension by continuous stirring
before the lock is released while in our simulations the
suspension is initially quiescent. Our simulations are also
seen to yield more local variations in the deposit height.
Such oscillations result from eddies generated at the top
of the current by the strong fluid backflow present in a
shallow ambient. Once again, the top surface was free in
the experiments, which acts to reduce the shear and thus
the formation of stationary eddies. It should be pointed
out that a similar comparison was presented by Necker
et al. (2002). Their simulations were based on similar
equations but did not include resuspension or slope vari-
ations. Both set of simulations agree with the experi-
ments because resuspension was in fact negligible in the
experimental results of DeRooij & Dalziel (2001). Note
also that Necker et al. (2002) also looked at deposits ob-
tained via 3-dimensional simulations and found negligi-
ble differences with those computed with a 2-dimensional
code.

Unfortunately, lock-release experiments in which re-
suspension plays a significant role to our knowledge have
not yet been published in the literature. In order to gener-
ate sufficiently large current velocities, experiments have
only been performed with a constant inflow of particle-
laden fluid (Garćıa and Parker 1993). At the present
time, our model remains constrained to finite volumes of
heavy fluid and we may not compare directly our sim-
ulations to experiments where resuspension was signifi-
cant. However, it may be seen that the size and den-
sity (d̄ ∼ 100µm, ρ̄p ∼ 2.5g/cm3) of particles subject to
reentrainment at slope angles or order 5◦ for a current of
typical velocity (∼ 1m/s) in our simulations are commen-
surate with available experimental data (Garćıa & Parker
1993, Garćıa 1994).

The main discrepancies between experiments and sim-
ulations therefore result from either initial or top sur-
face conditions. True turbidity currents typically occur
in deep ambients so that the effect of the free surface
above are inconsequential. We investigate the influence
of the height of the computational domain in the next

section. The initial velocity of the suspension also differ
between experiments and simulations, and is vastly un-
known for real turbidity currents. However, the discrep-
ancies resulting from such variations in initial conditions
are short-lived. We are here concerned with the develop-
ment of the current at intermediate times, where compar-
isons with experiments show that our model adequately
describes the dynamics of the particle-laden gravity cur-
rents.

3.3. Effect of the Computational Domain Height

We now investigate the influence of the computational
domain height, H, on the propagation velocity of the cur-
rent. Experiments show that light fluid back flow may
significantly reduce the velocity of currents spreading in
shallow surroundings (Huppert & Simpson 1980). Figure
7a shows the progression of the nose of density currents
(Us = 0), defined as the furthest point in the x1-direction
where C > 0.5, traveling over a flat surface for different
values of H. After a brief acceleration period, the ve-
locity of the current’s front remains nearly constant over
the first 20 non-dimensional time units. At longer times,
the current decelerates slowly as the height of its head
decreases. Currents traveling in deep ambient fluid are
not readily affected by the fluid back flow and thus travel
faster downstream. Such currents also shed significantly
fewer vortices, and therefore dissipate much less energy
through viscous effects. It may be seen from figure 7a
that computations performed with H ≥ 4 are not sig-
nificantly influenced by the precise value of H and thus
may be used to simulate gravity currents in very deep
surroundings.

Figure 7b shows the front velocity, uf , of density cur-
rents propagating on slopes of constant angles in both
shallow (H = 2) and deep (H = 4) computational do-
mains. In a deep ambient the front velocity is known
experimentally to increase slightly with slope angle both
for constant flux (Britter & Linden 1980) and constant
initial volume (Beghin et al. 1981). Our simulations re-
veal a similar dependence of uf on the slope angle. After
an initial slumping phase, the currents travel at nearly
constant speed, uf = 0.77 for θ = 0◦, uf = 0.80 for
θ = 5◦ and uf = 0.83 for θ = 10◦, showing a nearly linear
dependence of the front velocity on θ. Significant mixing
between the current and the ambient fluid is observed for
large slope angles, reducing the velocity at later times as
the size of the head decreases. In a shallow ambient, the
slope angle has a negligible impact on the propagation
velocity of the current (figure 7b). Irrespectively of the
slope angle, lighter fluid back flow hinders the progression
of the current and generates numerous energy dissipating
vortices.

3.4. Influence of the Initial Current Length

For resuspending currents, the time evolution of the
mass of suspended particles is of primary importance
in the description of the flow. If the mass of the cur-
rents increases in time, currents which we refer to as self-
sustaining, the flow is mostly eroding and may travel for
very large distances provided that the inclination angle
remains sufficiently large. In contrast, currents traveling
along relatively flat surfaces see their mass decrease in
time and are mostly depositional. These currents quickly
stop spreading as particles are deposited.
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Figure 8. Time dependence of the current mass normalized by the initial mass for various initial length,
xf , at two different inclination angles, a) θ = 3◦ and b) θ = 4◦. Provided that xf ≥ 1, the long-term
behavior of the current appears to be independent of the precise value of xf . In these simulations, we
consider deep-water particle-laden currents, H = 4, with Us = 0.02, Rep = 3.83 and ReT = PeT = 2, 200.
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We proceed to investigate the influence of the initial
current length, xf , on the time evolution of gravity cur-
rents and in particular on their self-sustaining quality.
Figure 8a shows the time dependence of the mass of sus-
pended particles of currents propagating over a small in-
clination angle, θ = 3◦, such that a current with xf = 2 is
depositional. Here the initial mass is normalized to one.
The mass of suspended particles first increases briefly
during the slumping phase of the current. However, at
later times, the settling of particles exceeds resuspension
and the total mass decreases. Increasing the initial length
is seen to have no qualitative impact on the time depen-
dence of the mass. The initial normalized mass increase is
less for longer currents since the amount of resuspended
particles near the front is nearly independent of xf .

For a larger slope angle, θ = 4◦, a current with xf ≥ 1
becomes self-sustaining and its mass increases with time,
see figure 8b. Once again, the relative mass increase is
smaller for longer currents. Notice that very short and
tall currents, e.g. with xf = 0.5 behave in a qualitatively
different manner and appear mostly depositional. The
initial length of the current therefore has little impact on
its long term behavior, provided it is larger than a critical
value near xf = 1. In the remainder of the simulations
presented here, we thus fix the initial current length equal
to its initial height at xf = 2.

3.5. Influence of Resuspension

Figure 9 shows an example of a strongly resuspend-
ing current. Here the slope angle is sufficiently large,
θ = 5◦, and the particle settling speed sufficiently small,
Us = 0.02, so that the amount of resuspended particles
exceeds that of deposited particles. Unresolved turbulent
motions, modeled as a diffusive effect, are responsible for
the high concentration observed below x2 ≈ 0.1, while
the increase in particle concentration at higher levels is
mostly attributable to the advection of the concentration
through resolved fluid motions. As the current propa-
gates downslope, its mass and velocity increase. In our
system, the only saturation mechanism is the resuspen-
sion upper bound Es ≤ 0.3/C̄0, so the current may grow
until the average particle concentration reaches a level
where the average particle-particle interactions may not
be neglected (C̄ ∼ 10%) and our model no longer applies.

In the early stages of motion (figure 9a), the current
resembles a non-eroding gravity current and only a small
boundary layer at the bottom exhibits a larger particle
concentration than C̄0. For comparison, we have included
in figure 10a an example of a current where the flow pa-
rameters are identical but resuspension is not taken into
account (Es = 0). In both cases, mixing with clear fluid
dilutes the upper part of the current and the vortices
shed behind the front are very similar. In the presence
of resuspension, the particle concentration increases near
the front and the formation of a massive head is observed
(figures 9c and e). The volume of the head does not
change significantly as the current progresses, but it be-
comes denser, as illustrated by the integrated concentra-
tion profile, < C >=

∫ H
0
Cdz, displayed in red in figure

9b-d-f). The head becomes progressively heavier as re-
suspended particles accumulate near the front and it thus
propagates faster, generating further erosion.

In the presence of resuspension, particles are deposited
near the left wall, but strongly eroded near the initial
front position, xf = 2, as the initial slumping phase gen-
erates vigorous erosion (figure 10b). Further downstream,

x1 > xf , the erosion pattern is mostly flat in regions
behind the current and increases nearly linearly toward
the position of the nose of the current. The thin bound-
ary layer preceding the bulk of the current indicates that
the erosion process may begin ahead of the front of the
current as motions in the ambient fluid are sufficiently
vigorous to generate resuspension, The magnitude of the
resuspension factor remains nearly constant, Es ≈ 50,
and is close to saturation (Es < 0.3/C̄0 = 60), in the
regions where particle-laden fluid is present. The depth
of the eroded region is thus approximately proportional
to the time interval during which fluid overlies a given
point and depends only weakly on the distance from the
source. In the absence of resuspension, see figures 10b-d-
f, the deposit may only increase in time. The local height
of the deposit reflects the time during which the current
overlaid a given point.

3.6. Dependence of Mass and Velocity on Slope
Angle

The slope angle, θ, plays a determinant role in the long
term behavior of resuspending currents. For sufficiently
large values of θ, the resuspended particles contribute sig-
nificantly to the potential energy of the current and allow
the current to become self-sustaining. Figure 11 shows
the time evolution of the mass of suspended particles (a)
and front velocity (b) of currents propagating at different
slope angles. In the depositional regime (θ = 0◦, θ = 2◦),
the mass of the current quickly decreases and shows little
dependence on the slope angle. Similarly, the velocity of
the front slowly decreases after a brief acceleration pe-
riod. As particles settle out of suspension, the driving
force is reduced and the front velocity decreases earlier
than for a corresponding density current, see figure 7.

For a larger slope angle (θ = 6◦), the mass increases in
a nearly exponential fashion while it increases almost lin-
early for an intermediate angle (θ = 4◦). The slope angle
is clearly seen to control the rate of increase, with larger
slope angles generating significantly larger entrainment
rates. Correspondingly, the front velocity increases with
slope angle. As the head becomes denser, the pressure
difference between the current and the ambient increases,
thus giving rise to a larger driving force. For given flow
parameters, there exists a critical slope angle, θc, above
which the mass of the current increases in time and below
which all particles eventually settle out. In the next sec-
tion, we investigate the dependence of the critical angle
of various flow parameters.

3.7. Self-Sustainment Criteria

We now wish to characterize the conditions under
which a gravity current is self-sustaining. We consider
only currents propagating in deep ambients, H = 4, and
with initial aspect ratio equal to one (xf = 2). We also
fix the turbulent Péclet and Reynolds numbers, as well
as the particle density and the fluid density and viscosity.
We focus our attention on the effects of the initial (dimen-
sional) height of heavy fluid, particle concentration and
particle radius.

We first note that the particle flux at the lower bound-
ary, F = (−(cos θ)C|x2=0 + Es)Us, allows to readily dis-
tinguish between the influence of the particle settling
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Figure 9. (a-c-e) Evolution of the particle concentration and (b-d-f) evolution of the bed height, re-

suspension factor Es and average concentration < C >=
∫ H

0
Cdz, multiplied by 20 for scaling purposes,

(red lines) of a strongly resuspending gravity current at times t = 5 (a-b), 10 (c-d) and 15 (e-f). The
color code is: 0.1 < C ≤ 0.5 yellow, 0.5 < C ≤ 0.8 green, 0.8 < C ≤ 1 red, 1 < C ≤ 3 cyan and 3 < C
black. In figures (b-d-f), the left scale refers to the bed height (solid lines) and the right scale to Es
(dashed lines) and 20 < C > (red lines). Other parameters are θ = 5◦, d̄ = 100µm, h̄ = 1.6m, C̄0=0.5%,
Us = 0.02, ReT = PeT = 2, 200, xf = 2 and H = 4.
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Figure 10. (a-c-e) Evolution of the particle concentration and (b-d-f) evolution of bed height (blue

lines) and average concentration < C >=
∫ H

0
Cdz, (red lines) of a non-resuspending gravity current at

times t = 5 (a-b), 10 (c-d) and 15 (e-f). The color code is 0.1 < C ≤ 0.5 yellow, 0.5 < C ≤ 0.8 green,
0.8 < C ≤ 1 red. The flow parameters are as in figure 9, θ = 5◦, d̄ = 100µm, h̄ = 1.6m, C̄0=0.5%,
Us = 0.02, ReT = PeT = 2, 200, xf = 2, H = 4, but the resuspension factor Es has been set to 0.
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Figure 11. Time dependence of the (a) normalized mass of suspended particles and b) front velocity
of currents propagating over slopes of various slope angle. A critical angle may be found, θc = 3.75◦, for
which θ > θc gives rise to currents whose mass increases indefinitely and θ < θc generates depositional
currents. Here the flow parameters are ReT = PeT = 2, 200, xf = 2, H = 4, d̄ = 100µm, h̄ = 1.6m,
C̄0=0.5% and Us = 0.02.
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Figure 12. a) Dependence of the critical self-sustaining angle θc on the initial heavy fluid height, h̄,
(solid line, top scale) and on the initial particle concentration C̄0, (dashed line, bottom scale). b) De-
pendence of the critical angle on particle radius (solid line). For comparison, we show the dependence
of 50/Es on particle radius (dashed line), where Es is the resuspension factor computed using a typical
value of the shear velocity u∗ = 0.13. Currents located above the curves are self-sustaining while those
located below are depositional. The parameters used in these simulations are ReT = PeT = 2, 200,
xf = 2, H = 4, d̄ = 100µm, C̄0 = 0.5% and h̄ = 1.6m. The last three parameters are varied individually.
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speed, Us, and that of the resuspension factor, Es. We
find that if the resuspension factor is kept constant, the
self-sustaining quality of the current is largely unaffected
by changes in the particle settling speed. Changes in Us
influence the time scale over which particles settle or are
resuspended but do not affect the mass balance directly.
However, variations in the particle settling speed typi-
cally affect Es and therefore, through the resuspension
factor, influence the critical self-sustaining angle.

We present in figure 12 the dependence of the critical
slope angle θc on the heavy fluid height and initial parti-
cle concentration in (a) and particle radius in (b). Here
we keep ReT = PeT fixed, but we allow all other param-
eters to vary. The dimensional settling speed, buoyancy
velocity, particle Reynolds number and resuspension fac-
tor are computed using the formulas of Dietrich (1982)
and equations (1), (5) and (6), respectively, with varying
values of h̄, d̄, and C̄0. As expected, large critical slope
angle are associated with small values of C̄0 and h̄. As ei-
ther C̄0 or h̄ increases, the typical velocity of the current
ūb =

√
(gh̄C̄0R) increases, and currents may thus gen-

erate larger bottom shear stresses. In non-dimensional
form, as the current velocity increases, the settling speed
Us diminishes, causing Es to increase. The influence of C̄0

is weaker than that of h̄; particle reentrainment will affect
low particle concentration currents more readily as the
relative particle concentration will then become larger,
thus partially counteracting the fact that low values of
C̄0 reduce the current velocity.

Figure 12b shows that increasing the particle radius
renders resuspension more difficult since large particle
radii cause Es to decrease. For comparison, we show
the dependence on particle size of a typical value of the
inverse of the resuspension factor (50/Es, scaled for plot-
ting purposes). Both curves are nearly parallel, indicating
that Es is the determinant factor in the self-sustaining
quality of a current. In the parameter regime investi-
gated here, we therefore find, by fitting the curves shown
in figures 12a-b, that currents are self-sustaining if

1 < K
sin θc(h̄C̄0)5/3

d̄11/4C̄0

≈ sin θc
sin 3.75◦

( h̄
1.6m

C̄0
0.5%

)5/3

( C̄0
0.5%

)( d̄
10−4m

)11/4

(11)
where K is a constant determined by the critical angle
associated with our default parameter values d̄ = 10−4m,
h̄ = 1.6m and C̄0 = 0.005. Turbidity currents may thus
be expected to grow in size as long as the inclination an-
gle of the lower boundary is larger than θc, and to decay
over regions where θ < θc.

3.8. Broken Slope Currents

We present here an application of our model to tur-
bidity currents traveling down a slope of varying angle.
To simulate the base of the continental slope, we selected
a geometry where the initial slope is 5◦ and the surface
away from the source is horizontal. The slope remains
constant for x1 < 7 and decreases linearly to 0◦ in the
region 7 ≤ x1 < 9. The current and particle parameters
were chosen to cause the mass of the current to increase
over the inclined region.

Figure 13 shows the progression of a current traveling
down a broken slope. In the early stages of motion, the
current is erosional and its concentration increases near

the lower boundary. However, upon reaching the horizon-
tal bed, the current becomes depositional and eventually
comes to rest. The transition from flow over an incline
to flow over a horizontal bottom surface occurs smoothly
and no significant changes in the height of the current
(hydraulic jump) is observed near the corner. The finite
volume of heavy fluid presumably prevents us from ob-
serving steady hydraulic jumps such as those reported by
Garćıa (1993).

Figure 14a illustrates the dependence of the mass of
suspended particles and front velocity on the position of
the current tip. As the current travels downslope, its
mass increases through erosion of the bed. The suspended
mass continues to increase even after the nose has reached
the flat surface, as most of the heavy fluid is still travel-
ing downhill. At later times, all the heavy fluid overlies a
horizontal surface and the current becomes depositional,
causing the mass to decrease. The front velocity, after the
initial slumping phase, increases while overlying a surface
of sufficiently large slope angle. When the nose reaches
the corner, the front velocity starts to decrease, show-
ing that the local slope angle readily influences the front
velocity. As the current spreads, the velocity keeps de-
creasing as particles are deposited.

The corresponding deposition pattern is presented in
figure 14b for different times. Particles are deposited
near the left wall before the eroding character of the cur-
rent develops as it moves downstream. The depth of the
eroded region remains constant over the region of large
slope angle. Near the corner, the current enters a depo-
sitional regime and leaves a deposit of maximum height
at the beginning of the flat region. The deposit then de-
creases with distance from the corner. If a current trans-
ports sufficient particles, the geometry of the bottom sur-
face may therefore be significantly altered. In particular,
the position of the corner is shifted to the left. The cu-
mulative effect of successive turbidity currents could then
displace or create large topographic features and have im-
portant geological consequences.

4. Conclusion

We have developed a high-resolution simulation model
for resuspending turbidity currents traveling over com-
plex bottom topographies. The model allows for predic-
tions of the erosion and deposition rates of interest in
geological and industrial processes. The flexibility of the
model allows us to consider such problems as, for ex-
ample, a series of successive gravity currents, and how
they are influenced by deposits resulting from earlier cur-
rents. We may therefore characterize the evolution of
large-scale deposit structures, which could eventually be
used to locate oil and gas fields hosted by turbidites.
In particular, we may simulate the spontaneous forma-
tion or damping of local bed topography and the evo-
lution of the overall system topography. Validation in-
formation has been presented to support the computa-
tional approximations required in order to model realistic
flows. It was demonstrated that a reduced Reynolds num-
ber ReT of O(1, 000 − 10, 000) is capable of reproducing
many of the flow features observed at much larger phys-
ical Reynolds numbers inaccessible to direct numerical
simulations (Parsons & Garćıa 1998). The resuspension
process is modeled on the basis of the empirical relations
determined experimentally by Garćıa & Parker (1993), by
means of a diffusive flux boundary condition at the top
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Figure 13. Particle concentration of a resuspending current traveling down a broken slope at times t =
2, 8, 14, 20 and 26. The initial slope angle is θ = 5◦ and the angle decreases linearly to 0 in the region
7 ≤ x1 < 9. Corresponding current mass, velocity and particle deposits may be found in figure 14. The
color code is: 0.1 < C ≤ 0.5 yellow, 0.5 < C ≤ 0.8 green, 0.8 < C ≤ 1 red, 1 < C ≤ 3 cyan and 3 < C
black. The flow parameters are again, d̄ = 100µm, h̄ = 1.6m, C̄0=0.5%, Us = 0.02, ReT = PeT = 2, 200,
xf = 2, and H = 4.
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Figure 14. a) Front velocity (solid line) and suspended mass (dashed line) as a function of the position
of the nose of a current propagating over a broken slope. The height of the bottom surface is shown as
the dotted line. b) Dependence of the deposit height on the distance from the left wall at various times
for the same current. The region left of the first vertical dotted line has a slope angle of θ = 5◦ and that
right of the second line one of θ = 0◦. Other flow parameters are ReT = PeT = 2, 200, xf = 2, H = 4,
d̄ = 100µm, h̄ = 1.6m, Us = 0.02 and C̄0 = 0.5%.
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of the particle bed. Here the value of the reduced Péclet
number PeT was chosen based on the experimental ob-
servations by Garćıa (1994). In the case of self-sustaining
currents, it was seen that the qualitative trends, in par-
ticular the dependence of the critical self-sustaining angle
on particle size or concentration, are independent of the
value of PeT .

For strongly resuspending currents, particle-particle
interactions may become important. Currents propagat-
ing on a slope of large angle were seen to develop re-
gions where the particle concentration exceeds 5%. The
viscosity of the suspension (Huang & Garćıa 1998), as
well as the particle settling speed would then be altered
by the presence of neighboring particles (Richardson &
Zaki 1954). Such effects were not included in our simula-
tions, as our main interest was to characterize the onset
of self-sustainment, but they should be incorporated in
simulations aiming to describe high particle concentra-
tion currents. A second important aspect to incorporate
in future research is the polydispersity of the suspended
particles, which may have a non-trivial influence on the
self-sustaining character of a current. Our model may
easily be extended to consider different particle sizes by
keeping track of several particle concentrations. The con-
centration of particles in the bed must also be modeled,
since only the topmost particles, the so-called active layer,
are available for resuspension (Parker et al. 2000). Ar-
moring may then occur, where large deposited particles
prevent the current from reentraining smaller underly-
ing particles, which thus prevents further growth of the
current (Karim & Kennedy 1986). Studying the com-
bined effects of polydispersity and repeated flows should
lead to a better understanding of the formation of re-
alistic deposits and will therefore be investigated in the
near future. Another potentially important aspect of the
flow not taken into account in our study is the effect of
variations in the spanwise direction. Incorporating such
effects requires three-dimensional simulations, which re-
main very demanding computationally. However, from
a theoretical point of view, our model may be expanded
to simulate three-dimensional flows in a straightforward
manner using the approach described by Necker et al.
(2003) for density currents. Given the appropriate com-
puting resources, one could thus study the formation of
three-dimensional structures such as levees, canyons or
mini-basins.
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Appendix A: Finite-Difference Formula

We show here as an example, the formula obtained
to estimate the first derivative of a function f for non-
constant ∆x2

af ′i−1 + f ′i + bf ′i+1 = αfi−2 + βfi−1 + γfi + δfi+1 + εfi+2,
(A1)

where

a =
xnnx

2
pxpp

(xnn − xn)(xn + xp)2(xn + xpp)
,

b =
−x2

nxnnxpp
(xp − xpp)(xnn + xp)(xn + xp)2

,

α =
−x2

nx
2
pxpp

(xn − xnn)2xnn(xnn + xp)2(xnn + xpp)
,

ε =
x2
nx

2
pxnn

(xp − xpp)2xpp(xn + xpp)2(xnn + xpp)
,

β = xnnx
2
pxpp

(
6x3

n − 2xnnxpxpp − x2
n(5xnn)+

xn(xn − xnn)2(xn + xp)3(xn + xpp)2

x2
n(4xp + 5xpp)− xn(3xnnxp + 4xnnxpp − 3xpxpp)

xn(xn − xnn)2(xn + xp)3(xn + xpp)2

)
,

δ = xnnx
2
nxpp

(
−6x3

p + 2xnnxnxpp + x2
p(5xpp)−

xp(xp − xpp)2(xn + xp)3(xnn + xp)2

x2
p(4xn + 5xnn)− xp(3xppxn + 4xnnxpp − 3xnxnn)

xp(xp − xpp)2(xn + xp)3(xnn + xp)2

)
,

γ =
2

xn
+

1

xnn
− 2

xp
− 1

xpp
,

xp = xi+1
2 − xi2, xpp = xi+2

2 − xi2,
xnn = xi2 − xi−2

2 , xn = xi2 − xi−1
2 .

Similar formulas were obtained for second derivatives and
approximations near and at the boundary.


