

# Metropolis methods applied to Bayesian geologic inversions

Michael Glinsky (CEO Science Leader, CSIRO; Adjunct Professor of Physics, UWA)



"Three Sisters" -- aboriginal womans' place for doing business, near BHPB Yandi iron ore mine

### Outline

- Bayesian inversion with uncertainty as a statistical mechanics problem
- Application to seismic inversion
- Application to marine E&M inversion
- The future



The connection of Bayesian inversion to the Metropolis method of statistical mechanics

$$P(A^B) = P(A) P(B|A) = P(B) P(A|B)$$

Bayes' Theorem -- a probability commutation relation

A = m = modelB = d = observed data

know forward modelP(m|d) = P(m) P(d|m) / P(d)want to knowprior probability of model

log[ P(d|m) ] ~ - [ d - s(m) ]^2 / noise^2 ~ - H / k<sub>B</sub>T

$$\langle m \rangle = \int m P(m \mid d) dm = \sum_{i=1}^{N} \frac{1}{N} m_i$$
 for  $\{m_i\}_{P(m \mid d)}$ 

#### Probabilistic model based inversion

- Layer based model built at seismic loop scale using sparse spike inversion
- Standard rock physics correlations estimated with uncertainty
- Fundamental properties of layers are:
  - net-to-gross ratio (N/G)
  - layer top and base
  - fluid type
- Ensemble of models generated that are consistent with seismic to within estimated noise level



CSIRO. Integration of uncertain subsurface information into multiple reservoir simulation models

### A closer look at Bayesian seismic inversion





- Fundamental parameters
  - Layer times
  - Rock properties in each layer
  - Fluid type
- Forward model
  - Reuss/Gassman for fluids
  - Convolution (multi-stack)

- Priors
  - Regional rock trends, layer "picks"
- Likelihoods
  - Synthetic seismic
  - Isopachs
- Posteriors
  - Multimodel MCMC sampling



## Ensemble of models at well location show effect of model based inversion



## Effect of model based inversion on match of synthetic seismic to seismic data





### Inversion tightens the range of possible net sand



probability of oil increased to 97% from 50% (oil in sand at this location)



#### Imbed the result into 3D model





## An overview of the model based inversion process



## Another application of Metropolis method -- marine CSEM inversion

- description of the physics
- what makes the inversion difficult
  - tight & non-linear (parametric bootstrap & path finding)
  - multi modal (model selection)
  - bound constraints (projected newton methods)
- connection of Bayesian to classical methods
- flavors of Bayes
  - Bayesian smoothing
  - layer split/merge
  - log grid with no-smoothing
- benchmarks
  - wedge
  - "bird" model
- anomaly definition
- systematic noise



# Controlled Source ElectroMagnetics (CSEM) or seabed logging (SBL)



Appeal? A "hydrocarbon saturation" "reservoir quality" detector.

Very rapid growth of service companies since 2000. Psuedo-"bust" 2007-8.

Abundant data. Little consensus on interpretation.







### Typical data and a 1D layered earth model fit





### Multi-modal distributions -- an inversion difficulty

• need to Bayesian model average for y  $- P(y|D) = \sum_{k} P(y|M_k,D) P(D|k)$ 



- because of mixture distributions
  - model geometry (e.g., number of layers)
  - rock types
  - fluids
- important because many times
  - uncertainties *within* a model < uncertainty between models



#### Model selection

#### Model selection – classic statistics problem

line ??, parabola ??, sextic ??

Newton or Ptolemy?



There exists sophisticated Bayesian model-selection procedures for general nonlinear regression problems.



#### Tight & non-linear -- an inversion difficulty

$$\chi^2 = (\mathbf{d} - \mathbf{F}(\mathbf{m}))^T C_d^{-1} (\mathbf{d} - \mathbf{F}(\mathbf{m})) + (\mathbf{m} - \mathbf{m}_p)^T C_p^{-1} (\mathbf{m} - \mathbf{m}_p)$$



#### The problem and the solution



- 1. Parametric bootstrap multiple start optimization perturb data with noise
- 2. Change coordinates to mode connection paths



### Mode connection paths









## An more realistic example of mode connection paths





#### Truncated distributions -- an inversion difficulty



CSIRO

### Connections to geostatistics

If 
$$C_{p,ij} = \sigma_p^2 \exp(-|i-j|/\lambda_p)$$
  

$$C_p^{-1} = \sigma_p^{-2} \begin{pmatrix} e_1 & e_2 & 0 & 0 & 0 & \dots \\ e_2 & e_3 & e_2 & 0 & \dots \\ 0 & e_2 & e_3 & e_2 & 0 & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & e_2 & e_1 \end{pmatrix}$$

$$e_1 = 1/(1 - e^{-2/\lambda_p})$$

$$e_2 = -e^{-1/\lambda_p}/(1 - e^{-2/\lambda_p})$$

$$e_3 = (1 + e^{-2/\lambda_p})/(1 - e^{-2/\lambda_p})$$

$$|C_p| = \sigma_p^{2n_m}(1 - e^{-2/\lambda_p})^{n_m - 1}$$

Degeneracy:  $\log |C_p| \to -\infty$  as  $\lambda_p \to \infty$ 



#### **Bayesian smoothing formulation**



#### Two flavors of Bayesian inversion



Bayesian Smoothing

### Bayesian model-selection (splitting/merging)

CSIRO

#### Comparison of the two flavors



#### Wedge model





Wednesday, 22 June 2011

#### Thickness and depth resolution





#### "Bird" model





### Uncertainty sampling methods for "bird" model

- Local covariances pretty hopeless
- Sampling methods only possibility
  - MCMC : OK but very demanding (narrow twisty objective)
  - Bayesianized parametric bootstrap: approximate method which is fairly good, uses optimization methods very heavily







#### Log resistivity profiles for individual realizations

CSIRO

## Cluster separation to discriminate background from anomaly





#### Individual anomaly cluster distributions



## Summary of individual anomaly clusters and background





#### Classification of individual realizations

CSIRO

#### **Corrections for systematic noise**



#### Past track record & future

- Peer reviewed technology for probabilistic seismic and CSEM inversions
  - DELIVERY, <a href="http://tinyurl.com/ydqk7nc">http://tinyurl.com/ydqk7nc</a> and <a href="http://tinyurl.com/ydk7nc">http://tinyurl.com/ydk7nc</a> and <a href="http://tinyurl.com/ydk7nc">http://tinyurl.com/ydk7nc</a> and <a href="http://tinyurl.com/ydk7nc">http://tinyurl.com/ydk7nc</a> and <a href="http://tinyurl.
  - deliveryCSEM, <u>http://tinyurl.com/yI79g3g</u>
- Seismic inversion well benchmarked on synthetic models and applied to over 25 assets by multiple companies
  - results cross validated to wells
  - pre-drill predictions verified by outcomes of drilling
- CSEM inversion well benchmarked on synthetic models and applied to several real datasets including the Cerah prospect in Block N (Sabah)

#### • Future

- refinement and application of 1D method
- extension into 2.5D using finite element methods with automatic grid refinement
- development of simultaneous CSEM and seismic timelapse inversion



#### P.S.: What I am really working on

- Understanding and prediction of self organisation of geologic sedimentation
- Developing and using a new renormalization theory, with linear convergent Wick expansion in terms of complexity of interaction
- Next seminar "Invariant actions -- dynamic DNA"



### Collaborations and personnel into the future

#### OCE Science Leader

 Michael Glinsky (planned 2 month residence at Santa Fe Institute, Pawsey Supercomputer Centre Steering Committee and leading UQ for Resources Grand Challenge)

#### OCE postdocs

- Karen Livesey, theoretical physicist from UWA
- Bela Nagy, mathematics from UBC and Santa Fe Institute

#### PhD students

- Zac Borden, computer simulation from UCSB
- Youssef Mroueh, mathematics from L'Ecole Polytechnique

#### Honours student

- from UWA associated with my Adjunct Professorship in Physics
- Visitors & collaborators
  - Moshe Strauss, theoretical physicist from Israeli National Lab
  - Vivek Sarkar, computational science from Rice University
  - · Henry Abarbanel, theoretical physicist from UCSD
  - Stephane Mallat, mathematics from L'Ecole Polytechnique
  - Tarabay Antoun, computer simulation from Lawrence Livermore National Lab
- Industrial application
  - Chevron SEED project
  - Woodside 10/11 budgeted technology project



#### **Earth Science and Resource Engineering**

Michael Glinsky CEO Science Leader

Phone: +61 458 196 079 Email: michael.glinsky@csiro.au Web: <u>www.qitech.biz</u>

### Thank you

#### Contact Us

Phone: 1300 363 400 or +61 3 9545 2176 Email: Enquiries@csiro.au Web: www.csiro.au

