

Line VISAR measurements of energy deposition for next generation MagLIF laser preheat at NIF

PRESENTED BY

Michael Glinsky

presented at 63rd Annual Meeting of the APS Division of Plasma Physics, 8 November 2021, Pittsburgh PA (paper CO05.00009)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2021-13509 C

² Contributions from:

- Sandia National Laboratories
 - Matt Weis
 - Adam Harvey-Thompson
 - Kris Beckwith
- Lawrence Livermore National Laboratory

- Brad Pollock
- John Moody
- Dave Strozzi

 NIF is the only facility that can drive full-scale targets at the design energy

3

- The intended MagLIF gas fill is 5 mg/cc D2
- NIF experiments use neopentane fills to achieve similar electron densities without the need for cryo
 - Allows for thin windows and B-fields

see Pollock et al. "Investigating at-scale MagLIF preheat on the NIF", talk CO05.00007, for more details

Parameters of study

- 1D ensemble of Hydra simulations (non-LTE in gas)
- Base case of:
 - 6.94 mm inner diameter cell
 - 6 micron plastic wall with 50 micron Al flyer
 - 2.9 mg/cc hydrocarbon
- Independent parameters (4):
 - Deposition radius (800 micron base case +- 400 micron)
 - Deposition temperature (1.5 keV base case +- 0.7 keV)
 - Deposition time (10 ns base case +- 5 ns)
 - Time origin (0 ns base case, trivial +- 1.6 ns)
- Dependent parameters (3):
 - \circ Deposited energy (kJ/cm)
 - Arrival Time of main shock (ns)
 - \circ Delta velocity of main shock (km/s)

6 Base case evolution

ħ

⁷ Energy and flyer interface vs. time

8 Variation in VISAR measurement

⁹ Zoom in on the flyer to see ablation of inner wall and backplane spallation

Two things to note: (1) first shock comes from ablation of inner wall from radiation shine, (2) evolution after main shock determined by backplane spallation, material strength and failure properties, and laser power.

10 Ensemble for depositional energy inference using arrival time

11 Correcting the arrival time with the the preshock fiducial

for energy = 20.000 kJ/cm, error = 2.611 kJ/cmfor energy = 10.000 kJ/cm, error = 0.983 kJ/cmfor energy = 2.000 kJ/cm, error = 0.102 kJ/cm

12 Quantitative energy deposition comparisons can be made with line VISAR

- Line VISAR measures the shock arrival time at the backside of an Al flyer
- 1D Hydra sims parameterized energy deposition, calculated velocity profiles, determined strong dependence of energy with arrival time

13 Combining information can give energy deposition

14 Forward path

- LiF (< 100 kBar) or quartz (> 1 Mbar) window to stop spallation, allowing a simpler delta velocity vs deposited energy behavior (100 kBar pressure, base case)
- High strain rate material model for Al
- Increase in radius to decrease fractional error
- Model other warm hydrocarbon surrogate density and three D2 densities
- Bayesian analysis:
 - Building a surrogate
 - Prior distribution
 - Using time and delta velocity
 - Using delta velocity profile
 - Using simple model of laser propagation for time origin estimation