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Abstract

Flow models commonly require high-resolution (~1 m vertical) grids of
properties. Seismic data are areally dense, but their vertical resolution
(~10 m) may be too coarse for flow models. We propose a method to
downscale seismic inversions to flow models. The method combines
Bayesian seismic inversion for coarse-scale effective properties (e.g.
thickness, porosity), with rock physics models to couple elastic and flow
properties, and geostatistics for spatial correlations and well data. These
downscaling constraints propagate correlated inter-property and inter-
layer information from seismic into the flow model. Possible pinchouts
make the seismic constraint only piecewise linear, which complicates
sampling. A subspace projection technique addresses this difficult
configurational problem.

The uncertainty is developed in a hierarchical or cascading workflow.
Each realization from a stochastic seismic inversion is used as an exact
constraint in generating a sub-ensemble of models. Because the
cascading workflow is combinatoric, it may generate many plausible
prior models. There may be far too many models to examine using full-
field, multiphase simulation. Nonetheless, the widest possible range of
models should be examined with the full simulation method if
uncertainty is to be assessed.

To make uncertainty assessment feasible, we propose a method to
select a particularly relevant subset of the prior models. The approach
uses a simple, fast simulation method (single phase tracer flow) to
screen the large set of models. Although the screening simulation does
not include all of the physics or operational constraints of the full-field
model, it does incorporate many important effects of heterogeneity; and
it is being used to select models, not to approximate them. Many
responses (here, 24) can be computed from the set of tracer simulations.
The responses are transformed to principal components, allowing a
reduction in dimensionality for sampling. We then use a quasi-Monte
Carlo method to sample in the principal components space.

In addition to the PC sampling method, preliminary factorial studies can
provide guidance on important factors. In this study, the sand thickness
range appeared unimportant, and that dimension (and contribution to
combinatorics) can be removed from the stochastic model sampling
process.

These methods appear to be first steps toward a fully stocastic seismic-
to-simulation workflow.
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Goals

The multiple goals of this work include

= Downscale seismic data to flow models

= Integrate the precision of different data consistently

= Understand the effects of priors using tracer flooding

= Choose realizations using Principle Component Analysis (PCA)
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Scale Resolution and Heterogeneity
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= Seismic data acquisition and processing provide excellent
spatial coverage of the reservoir

= A welltie/wavelet extraction step calibrates the log data to
the seismic data. The seismic inversion step produces rock
properties and geometry direct from seismic amplitudes,
using the extracted wavelet.

= Seismic resolution (~10 m) is still coarser than for flow
models

= Well log data and their derived interpretations provide
excellent vertical resolution and insight into the distribution of
the log-derived petrophysical properties at the well locations
= Geostatistical methods can improve flow behaviour
predictions by using sparse conditioning data and dense low
resolution seismic data

Working on Exact and Inexact Constraints

Seismic
inversion
ensemble

Ensemble means, autocovariances, and crosscovariances
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Realizations honor correlations between mesoscale seismic properties
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Select prior stacking model (e.g., thickness variograms)

Downscale seismic inversions to flow scale using well data, exactly matching seismic constraints
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Model Parameterization Constraints
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= Fine scale layer thickness h « Shale thickness By = M.

= Seismic scale thickness H

= Sand thickness
= Fine scale porosity ¢

= Seismic scale porosity ® = Sand porosity i,
Exact Constraints
= Using seismic inversion realization
= Constraints preserve rock physics covariances
= Prior distribution P(t,$) is a spatially correlated multi-Gaussian distribution for
sublayer thicknesses, porosity etc, conditioned on well data
= Likelihood enforces exact constraints:
= Zero if constraints not satisfied
= One if constraint satisfied

Problem Formulation

P(mg) ~ Plmgm..m,)P(m,)P(m.)

= Plmiy) is the fine, downscaled model

= () is the course, seismically resolved
model

= () is drawn from the distribution of fine-
scale meta parameters such as sill, ranges etc.

A Cascading Workflow

= The proposed workflow uses a hierarchy of models and methods, ranging from

seismic inversion to the final downscaled model. Each level in the hierarchy introduces

variability appropriate to the level of uncertainty in that modeling process or
measurement.

= The cascading workflow has several benefits:

= Using inversion realizations as exact constraints preserves desired multivariate

correlations in the rock physics model

= Each modeling component is simplified -- the downscaler doesn't have to
'know' any rock physics

= The programs for inversion, imposing seismic constraints, and modeling stratal

styles are separate, simplifying development and modification (and re-using
code effectively)

= On the other hand, cascade can lead to a combinatoric explosion in the number of
models to be explored. This motivates the use of screening methods, which select a

subsample of especially informative models (see Selecting the Most Relevant
Realizations: Screening).
= This requires computing the conditional probability s |si.., m,) by kriging, and

specifying prior distributions for the fine-scale metaparameters, (. The prior for the

coarse models, P}, is obtained from the stochastic inversion.
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p = layer property such as thickness or porosity
o = standard deviation




2D and 3D Examples for Exact Constraints .
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® Fig. a and Fig. b are thickness results for a two layer case with i
= In Fig. a all the realizations are on the constraint surface
= In Fig. b priors and constraints on thickness are such that 7 percent of the realizations have h, = 0 which
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simultaneously

3D Example (e, f)

used.

(e) Medium Sand Variance (4 m?) (f) High Sand Variance (36 m?)
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= Fig. c and Fig. d are porosity results for two layers with priors ¢ = (0.2.0.3) o, = 0.05.
= In Fig. c because of the constraints the porosity of both the layers cannot be greater or less than 0.25

= In Fig. d porosity distributions of both the layers is shown. The constraints are such that ¢, >0.25 are not
20 m  very probable and this skews the curve steeper on the right side.

= Simulation on a 100 x 100 x 10 cornerpoint grids, areal extent is X = Y = 1000m, and 4 conditioning traces are

* Both realizations use Gaussian variogram with range 500 m
= Constraints used are /I = 20im, H, = 14 m,and ®H, = 3.5 m; & = 0.25,
= Blue lines are shales and all constraints are satisfied

Effect of Priors on Reservoir Responses

i i tracer concentration
Sand(\lr:zr;ance Shale(nall;anne Sand Range (m) Shale Range (m)
0.0 ENT m 1.0
Low 225 0.25 250 250
Medium 16 1 500 500
High 36 4 1000 1000

Tracer Flooding Results (a, b)
= Atwo-level full factorial design examines the above four factors
= Recovery factor varies between 0.30 to 0.65
= Stochastic fluctuations are comparable to prior variations
= Sand sill (variance of thickness) is the dominant factor
= Note: shale thickness and porosity priors were not varied in this design.
= Focus on fluctuation with six-fold replicates
= Mean responses are different (p = 0.09243, Welch two-sample t-test)
= Prior specifications significantly affect recovery
= Examining flow models (Figs. a,b) indicates lower recovery in high sill case may be caused by
= Variability in thickness leading to velocity fluctuations
= More frequent terminations increasing tortuosity
= Implications
= A range of plausible priors should be considered
= Some components of prior may dominate (e.g., sand sill), simplifying modeling

= Caveat: /() for the variogram parameters has not been specified. This will be required to do a
full hirerarchial MCMC simulation. The factorial design simply examines sensitivities.

(b) High sand thickness variance

Summary

1. Stochastic seismic inversion models can be integrated
with a truncated Gaussian geostatistical model for fine—
scale layer thicknesses and porosity using a Markov chain
Monte Carlo algorithm.

2. Mesoscale seismic inversion realizations (which act as
exact constraints) of net-sand, gross sand, and porosity
are “stochastically downscaled,” using a Metropolis
Hastings sampler exploiting dimensionality reduction and
projection to the constraint surface.

3. Synthetic three—dimensional cases demonstrate that the
proposed data integration procedure is acceptably
efficient for exact (5000 samples at each trace < 8 min on
laptop) and is capable of producing models consistent
with seismic data and exhibiting diverse flow behavior.

4. Prior model specification has a statistically significant
effect on response, and prior variability and stochastic
fluctuations may both make substantial contributions to
overall response variability.

5. A smaller but still diverse subsample of plausible models
can be selected by performing a PCA on flow responses
computed with a fast, approximate method, and then
applying Hammersley sampling in PCA space.

Selecting the Most Relevant Realizations: Screening
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(c) Variance captured by each PC

(a) Two correlated responses form tracer flooding (b) Loading parameters for first two significant PCs

Selecting Realizations using PCA and Hammersley Sampling

* Used tracer simulation as fast screening device
« purely local problem, >100X faster than multiphase flow

« 24 different responses were considered (Fig. a)
« diverse types, e.g., injectivity, residence time
« in several directions, because of 9-spot geometry (simulation model, below)

* Use Principal Components (PC) for dimensionality reduction (Fig. b)
* Here, the first 7 components capture 90 percent of the variance (Fig. c)
* We can sample in 7 rather than 24 dimensions

* Sample the low-dimensional space to select models for detailed simulation
* Here, use Hammersley sequences
 Select nearest model to each Hammersley point

* The components of the method could be adapted to other responses and sampling methods. The essential components are
A fast screening simulation that indicates model flow variability at a fraction of full simulation cost
« Dimensionality reduction
« Sampling in reduced space for model selection
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