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The Mallat Scattering Transformation (MST) is a hierarchical, multiscale, transformation that has
proved to be effective at distinguishing textures, sounds, written characters [1-3], and the emergent
behavior (self organization) of magnetized Z-pinch implosions [4, 5]. It has also been shown to
be a form of deep learning related to convolutional neural networks [6]. This talk will explore its
meaning, its relationship to causal physics, and its significance in the analysis of complexity.

We have developed theory that connects the transformation to the causal dynamics of physical
systems. This has been done from the classical kinetic perspective (using a coordinate free exterior
calculus formalism [4]) and from the field theory perspective [7], where the MST is the generalized
Green’s function, or S-matrix of the field theory [8] in the scale basis. From both perspectives the
first order MST is the current state of the system, and the second order MST are the transition
rates from one state to another.

If one includes the evolution coordinate, that is time, in the transformation, the second order
MST directly, and with no further transformation, gives the transition kernel of the dynamics. This
is independent of the current state, that is the first order MST. Given an ensemble of example states
that sufficiently sample the transition kernel, one has fully characterized the physical system and
should be able to evolve any state forward in time, as given by the initial first order MST. That is
the MST is the perfect coordinate system in which to learn, identify, and propagate the dynamics.

* SNL is managed and operated by NTESS under DOE
NNSA contract DE-NA0003525.

[1] S. Mallat, Communications on Pure and Applied
Mathematics 65, 1331 (2012), arXiv:1101.2286,
doi:10.1002/cpa.21413.

[2] J. Bruna and S. Mallat, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 35, 1872 (2013),
arXiv:1203.1513, doi:10.1109/TPAMI.2012.230.

[3] J. Andén and S. Mallat, IEEE Transactions on
Signal Processing 62, 4114 (2014), arxiv:1304.6763,
doi:10.1109/TSP.2014.2326991.

[4] M. E. Glinsky, T. W. Moore, W. E. Lewis, M. R. Weis,

C. A. Jennings, D. A. Ampleford, E. C. Harding, P. F.
Knapp, M. R. Gomez, and S. E. Lussiez, “Quantifica-
tion of MagLIF morphology using the Mallat Scattering
Transformation,” (2019), Sandia National Laboratories
Technical Report, SAND2019-11910, arXiv:1911.02359.

[5] D. Yager-Elorriaga, Y. Lau, P. Zhang, P. Camp-
bell, A. Steiner, N. Jordan, R. MdcBride, and
R. Gilgenbach, Physics of Plasmas 25, 056307 (2018),
doi:10.1063/1.5017849.

[6] S. Mallat, Phil. Trans. R. Soc. A 374, 20150203 (2016),
arXiv:1601.04920, doi:10.1098 /rsta.2015.0203.

[7] M. E. Glinsky, “A new perspective on renormalization:
the scattering transformation,” (2011), arXiv:1106.4369.

[8] S. Weinberg, The quantum theory of fields (Cambridge
University Press, 1995).


http://arxiv.org/abs/1101.2286
http://arxiv.org/abs/1101.2286
http://arxiv.org/abs/1203.1513
http://arxiv.org/abs/1203.1513
http://arxiv.org/abs/1304.6763
http://arxiv.org/abs/1304.6763
https://arxiv.org/abs/1911.02359
https://arxiv.org/abs/1911.02359
https://arxiv.org/abs/1911.02359
https://doi.org/10.1063/1.5017849
http://arxiv.org/abs/1601.04920
http://arxiv.org/abs/1106.4369
http://arxiv.org/abs/1106.4369

