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Summary 
 
A forward acoustic model shows that geologic lithofacies 
groups can be identified by the character of the wavelet 
transform of their seismic response even for incident 
signals with wavelength much larger than the dominant bed 
thickness.  The same model shows that multiple interbed 
reflections can be neglected.  This allows the use of a 
simple analytical relation of the linear reflection response 
expressed as a convolution between the incident signal and 
the scaled derivative of the acoustic impedance.  The 
relation is applied to solve the inverse problem for the 
acoustic impedance, using orthogonal discrete wavelet 
transform (DWT) and Fourier transform (FT) methods;  
good agreement is obtained between the well log wavelet 
spectrum and both the forward modeled seismic data and 
the real seismic data.  It is found that the DWT approach is 
superior, having a better signal-to-noise ratio and more 
localized deconvolution artifacts.  A population of well 
logs containing the lithofacies groupings is used to define 
the conditional probability of a wavelet transform response 
given a lithofacies group.  These conditional probabilities 
are used to estimate the lithofacies probability given a 
seismic wavelet response via a Bayesian inversion. 
 
Introduction 
 
The multiscale character of geology and how it manifests 
itself in the seismic record has been studied by many 
authors.  This has ranged from examining the frequency 
distribution of  beds (Talling 2001, Rothman and 
Grotzinger 1996), to examining the theoretic reflection 
response of statistically generated bed sequences 
(Velzeboer, 1981), to statistical correlation of hyperspectral 
seismic attributes and log response using neural networks.  
 
There has also been a recent body of research that has 
appeared in the image processing and target recognition 
literature that has used wavelet based techniques to analyze 
transient signals (Mallat, 1998).  It has also been 
recognized that wavelet analysis is the best and most 
fundamental way to analyze a multiscale signal (Herrmann 
1997). 
 
This paper recognizes the multiscale character of geologic 
sedimentation that has been examined by many authors, 
and the efficacy of wavelet decompositions in analyzing 
multiscale signals.  It establishes the fundamental 
relationship between the wavelet decomposition of the 
acoustic properties of the rocks and the wavelet 
decomposition of the seismic reflection response.  This 

relationship is inverted so that the wavelet decomposition 
of the rocks can be determined from the wavelet 
decomposition of the seismic reflection response.  It is 
found that even very low frequency seismic data (10 Hz) 
can distinguish multiscale geologic structure that has a 
dominant bed thickness that would require frequencies 
greater than 60 Hz to resolve.  A population of well logs is 
analyzed to determine the characteristics of their wavelet 
transformations given their lithofacies.  The inverse 
relationship along with the knowledge of the multiscale 
character of lithofacies, allows one to analytically 
determine the probability of a lithofacies given low 
frequency seismic data. 
 
The difference between this approach and previous 
approaches lies in its rational, model based approach.  
Attempts at statistical correlation, that is assay, of seismic 
response to underlying geology suffer from (1) limited data 
where both a well log and good seismic exist, (2) biased 
data where high net pay sands are preferentially sampled 
and (3) an inability to extrapolate beyond the range of 
sampled physical situations.  A rational, model based 
approach allows well logs to be used where there is no 
reliable seismic data, a compensation to be made for the 
biased sampling, and a reliable extrapolation to be made 
due to the constraints of the model. 
 
The potential business value lies in the determination of the 
probability of the lithofacies.  Each lithofacies can be 
characterized in terms of the range of its volumetric 
properties such as net-to-gross, and reservoir flow 
properties such as Kv/Kh.  A more definitive determination 
of the probability of the lithofacies will reduce the 
uncertainty in the recoverable volumes, well count, and 
production rates.  This will allow better business decisions 
to be made, creating fiscal value. 
 
This paper will present the results of forward modeling 
using a hydrodynamic computer algorithm that does not 
allow for shear wave propagation.  This is done for two 
very distinct lithofacies.  It is shown that multiple interbed 
reflections are not important.  This allows a linear 
approximation to be made and a relationship inverted to 
give the wavelet decomposition of the lithofacies given the 
wavelet decomposition of the seismic reflection response.  
It is shown that the DWT gives a superior inversion 
compared to the FT.  This relationship is then used along 
with the conditional probability of a wavelet transform 
given a lithofacies (determined from well logs), to calculate 
the probability of a lithofacies given a seismic wavelet 
transform response. 
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Method and Results 
 
The seismic expression of two distinct lithofacies is 
examined using a  hydrodynamic model.  The model allows 
only compressional, that is, acoustic waves.  It  is valid for 
all internal reflections and accounts for full wave 
propagation.  An incident wave is reflected off two 
localized 1D acoustic impedance perturbations taken from 
two real well logs.  The length of the perturbations is 
approximately 200 m.  The continuous wavelet transform 
(CWT) is taken of the derivative of the acoustic impedance.  
Figures 2a and 3a show the wavelet transform of the 
derivative of the acoustic impedance.  Figures 2b and 3b 
show the wavelet transform of the reflected signal for 
incident signal (Mexican hat wavelet) with a 20 Hz central 
frequency.   Figures 2c and 3c show the reflected signal for 
an incident signal with a 10Hz central frequency.  Note that 
the central frequency for Fig. 3a is close to 60 Hz yet there 
are significant differences between 2b and 3b, and even 
between 2c and 3c. 
 
The hydrodynamic model was modified to have a 
parameter that would amplify or attenuate the effects of 
multiple reflections.  The forward model shown in Fig. 3b 
was done with the effects of multiple reflections reduced by 
a factor of 16.  The result is shown in Fig. 1.  No significant 
difference is seen (2.4% of the energy, and no significant 
change in the shape of the wavelet transform). 
 
A linear scattering approximation is therefore made since 
the effect of multiple reflections can be neglected.  The 
forward model reduces to convolution of the incident signal 
with the derivative of the acoustic impedance.  A change of 
scale for the acoustic impedance is necessary to account for 
the two way travel time.  The inverse model reduces to a 
deconvolution with the appropriate change of scale.  This 
deconvolution can be done in the standard way via a 
Fourier transform (FT) or via a discrete wavelet transform 
(DWT).  The results of the deconvolution done with both 
methods are shown in Figs. 4a and 4b.  The signal-to-noise 
ratio for the FT is 13.8 dB compared to 22.1 dB for the 
DWT.  The deconvolution artifacts are also more localized 
for the DWT.  This would reduce the interference of 
multiple stacked packages.  The DWT is therefore used to 
deconvolve the 20 Hz synthetic seismic shown in Figs. 2b 
and 3b.  The results are shown in Figs. 2d and 3d.  Notice 
the similarity to the original wavelet transform of the 
acoustic impedance shown in Figs. 2a and 3a. 
 
The CWT of the actual seismic inversion is shown in Figs. 
2e and 3e.  The response is quite similar to the wavelet 
transform of the well log derivative acoustic impedance 
(Figs. 2a and 3a), even though the processing was not 

amplitude preserving and could have its bandwidth 
significantly improved. 
 
The final component of this project is the collection of a 
population of well logs, classification of intervals of those 
well logs according to their lithofacies group, and 
calculation of the wavelet transforms of the derivatives of 
the acoustic impedance for the same intervals.  After 
examining the wavelet transforms of each lithofacies 
population, a suitable parameter of the wavelet transform 
was chosen which discriminated the lithofacies.  The 
chosen parameter was the log of the average scale, σ< > .  
Histograms for each lithofacies were plotted and fit to a 
Gaussian.  The result is shown in Fig. 5.  Given these 
conditional probabilities, ( | )P lithofaciesσ< > , the prior 
probabilities of A and B, and the observed σ< > ; the 
probability of a lithofacies can be calculated via a Bayesian 
inversion 
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Given an observed average scale of 1.0 (lithofacies B, Fig. 
3), the probability of A is 23%.  An observed average scale 
of 1.6 (lithofacies A, Fig. 2), gives a 95% probability of  A. 
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Figure 1.  Reflected pressure profile.  Reduced internal 
reflections (blue), full internal reflections (red). 
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Figure 2. CWT for lithofacies A:  (a) derivative of acoustic 
impedance of well log, (b) 20 Hz synthetic seismic, (c) 10 
Hz synthetic seismic, (d) inverted 20 Hz synthetic seismic, 
(e) inverted real seismic.  The x axis is the scale of the 
wavelet transform in log10 m.  The color is determined by 
the smoothed (in depth, 30 m) absolute value of the CWT. 
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Figure 3. CWT for lithofacies B:  (a) derivative of acoustic 
impedance of well log, (b) 20 Hz synthetic seismic, (c) 10 
Hz synthetic seismic, (d) inverted 20 Hz synthetic seismic, 
(e) inverted real seismic.  The x axis is the scale of the 
wavelet transform in log10 m.  The color is determined by 
the smoothed (in depth, 30 m) absolute value of the CWT. 
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Figure 4.  Inverted derivative impedance from synthetic 20 
Hz data (green) and averaged well derivative impedance 
(red).  This is shown for:  (a) the FT inversion with a 
S/N=13.8 dB and (b) DWT inversion with a S/N=22.1 dB. 

 
Figure 5.  Conditional probability of average scale given 
the lithofacies.  Lithofacies A (red), B (blue). 

 
 
Conclusions 
 
The analytic DWT inverse formula for the wavelet 
transform of the acoustic impedance given the seismic 
reflection response has been justified by the forward 
modeling and works well.  Real seismic data shows the 
response predicted by the forward modeling.  When this is 
combined by the conditional probabilities derived from a 
population of well logs, the probability of a lithofacies 
group can be reliably estimated.  This can be done even if 
the bandwidth of the seismic data is not good enough to 
resolve the dominant bed thickness of the lithofacies group. 
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