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Abstract

We introduce a new open–source toolkit for the well–tie or wavelet–extraction prob-
lem of estimating seismic wavelets from seismic data, time-to-depth information, and
well–log suites. The wavelet extraction model is formulated as a Bayesian inverse
problem, and the software will simultaneously estimate wavelet coefficients, other
parameters associated with uncertainty in the time–to–depth mapping, positioning
errors in the seismic imaging, and useful amplitude–variation–with–offset (AVO) re-
lated parameters in multistack extractions. It is capable of multi–well, multi–stack
extractions, and uses continuous seismic data-cube interpolation to cope with the
problem of arbitrary well paths. Velocity constraints in the form of checkshot data,
interpreted markers, and sonic logs are integrated in a natural way.

The Bayesian formulation allows computation of full posterior uncertainties of
the model parameters, and the important problem of the uncertain wavelet span
is addressed uses a multi-model posterior developed from Bayesian model selection
theory.

The wavelet extraction tool is distributed as part of the Delivery seismic inversion
toolkit. A simple log and seismic viewing tool is included in the distribution. The
code is written in java, and thus platform independent, but the Seismic Unix (SU)
data model makes the inversion particularly suited to Unix/Linux environments. It
is a natural companion piece of software to Delivery, having the capacity to produce
maximum likelihood wavelet and noise estimates, but will also be of significant util-
ity to practitioners wanting to produce wavelet estimates for other inversion codes
or purposes. The generation of full parameter uncertainties is a crucial function for
workers wishing to investigate questions of wavelet stability before proceeding to
more advanced inversion studies.
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1 Introduction

The common procedure of modeling post–stack, post-migrated seismic data as
a simple convolution of subsurface ‘reflectivity’ with a band–limited wavelet,
and the use of this model as the basis of various probabilistic inversion algo-
rithms, has been the subject of some very vigorous – and occasionally heated
– debates in the last 20 years or so. It is not our intention to rehearse the
many and diverse arguments at length in this article: trenchant views both in
support and opposition to this model have been expressed at length in the lit-
erature (see, e.g. the series of vigorous exchanges following Ziolkowski (1991)).
Many detractors believe that this approach places excessive importance on
statistical machinery at the expense of physical principles; a perfectly reason-
able objection in cases where important experimental or modeling issues are
oversimplified and the statistical analysis is disproportionately ornate. While
these criticisms can have considerable weight, our view is that inverse modeling
in geophysics must always deal with uncertainty and noise, and the commu-
nity seems to have come to the practical conclusion that good modeling can
dispense with neither solid physics nor sensible statistics.

There is a perfectly adequate theoretical justification for the convolutional
model, as long as absorption and reflections are sufficiently weak, and the
seismic processing preserves amplitudes. Closely related assumptions must also
hold for the imaging/migration process to be meaningful; these are usually
based on ray–tracing and the Born approximation. The migrated images will
then be pictures of the true in–situ subsurface reflectivity – albeit bandlimited
by an implied filter which embodies the wavelet we seek to extract. Since
modern inversion/migration methods are closely related to Bayesian updates
for the subsurface velocity model based on common image gathers (Tarantola,
1984; Gouveia and Scales, 1998; Jin et al., 1992; Lambare et al., 1992, 2003), it
would be desirable if well log data were directly incorporated into the migration
formula. This is not commonly done, for reasons that may relate primarily to
the segregation of workflows, but also technical difficulties. There remains a
practical need for wavelet extraction tools operating on data produced by the
migration workflow.

Much of the skepticism about convolutional models has arisen from the ob-
servation that wavelets extracted from well ties often seen to vary consider-
ably over the scale of a survey. This in itself does not seem to us a sufficient
argument to dismiss the model as unserviceable. Firstly, a host of reasons as-
sociated with inadequacies in the seismic processing, may create such effects.
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For example, sometimes there is heavy attenuation from patchy shallow reefs
which is imperfectly compensated for. Secondly, it is rarely – if ever – demon-
strated that the difference in wavelets extracted at different parts of the survey
is statistically significant. As before, an ideal solution would involve unifying
the imaging problem with the well–tie problem for each new well, so imaged
amplitudes are automatically constrained to log information. But until this is
commonplace, independent parties will be responsible for the seismic process-
ing and well–tie workflows, so the well–tie work has to proceed with the ‘best
case’ processed seismic data at hand. In this situation, errors in the imaging
have to be absorbed in modeling noise, and the practitioner should at least
attempt to discern if the wavelets extracted at different wells are statistically
different.

It is the author’s experience that commercial wavelet extraction codes do not
proceed from an explicit probabilistic approach to wavelet extraction, and thus
are not capable of producing statistical output. Most appear to implement a
reasonable least-squares optimization of a model misfit function, but produce
only maximum-likelihood estimates (with no associated uncertainty measures),
and often only cosmetically filtered versions of these. In addition, there are a
number of parameters associated with the time-to–depth mapping (henceforth
called ’stretch–and squeeze’), multi–stack and incidence angle (AVO) effects,
and imaging errors that ought in principle to be jointly optimized along with
the wavelet parameters to improve the well tie. To the authors knowledge,
control of such parameters are not available in commercial codes. Many of
the commercial programs quote the fine work of Walden and White (Walden
and White, 1998) in their pedigree. These algorithms are entirely spectrally–
based, which make them very fast and well suited to (probably) impatient
users. However, the formulation is not explicitly probabilistic, and the spectral
methods will no longer hold once extra modeling parameters are introduced
which will move the well log in space or time. More recently, a paper by Buland
and Omre (2003) presents a model very much in the same spirit as that we
advocate, but no code is supplied. Some notable differences in modeling priority
exist between our work and that of Buland. We consider the problem of the
unknown wavelet span as very important, and devote considerable effort to
modeling this. Conversely, Buland puts some focus on correlated noise models
and assumes the wavelet span to be known apriori. It is our experience that the
wavelet span, treated as an inferable parameter, couples strongly with the noise
level, and is unlikely to be well known in a practical situation. We also prefer
a more agnostic approach to modeling the effective seismic noise, since this is
a complex mixture of forward modeling errors, processing errors, and actual
independent instrumental noise. It seems unlikely that such a process would
be Gaussian, and still less susceptible of detailed modeling of the two–point
Gaussian correlation function.

We have no objection in principle to the application of cosmetic post-extraction

3



filtering in order to improve the apparent symmetry or aesthetic appeal of ex-
tracted wavelets, but feel that these requirements would be better embedded
in some kind of prior distribution in a Bayesian approach. Similarly, the re-
lationship between the sonic log and any time–to–depth information derived
from independent sources (like a checkshot) seems most naturally expressed
with a Bayesian likelihood function.

In summary, we feel that the simple convolutional model is likely to linger on
indefinitely as the standard model for performing probabilistic or stochastic
inversion. It is then crucially important to ensure that inversions are run with
wavelets and noise parameters optimally derived from well data, checkshot
information and the same seismic information. There is then a considerable
need for quality software for performing well–ties using a full probabilistic
model for the wavelet coefficients, span, time to depth parameters, and other
related parameters that may be required for inversion or other quantitative
interpretations.

We present just such a model and its software implementation details in this
paper. Section 2 presents the Bayesian model specification, and suitable choices
for the priors. The forward model, likelihoods and selection of algorithms is
discussed in section 3, with the final posterior distribution described in sec-
tion 4. Questions of statistical significance are addressed in section 5. Details
about the code and input/output data forms are discussed in section 6, but
most detail is relegated to the electronic appendices 2 and 3. A variety of ex-
amples are presented in section 7, and some final conclusions are then offered
in section 8.

2 Problem Definition

2.1 Preliminaries

The wavelet extraction problem is primarily one of estimating a wavelet from
well log data, imaged seismic data, and a time–to–depth relation that approxi-
mately maps the well-log onto the seismic data in time. We will use the follow-
ing forward model in the problem, with notation and motivations developed
in the remainder of this section. The observed seismic Sobs is a convolution of
the reflectivity r with a wavelet w plus noise en

Sobs(x+∆x, y +∆y, t+∆tR) = r(x, y, t|τ ) ∗w + en, (1)

taking into account any lateral positioning (∆x,∆y) and registration error ∆tR
of the seismic data with respect to the well coordinates. The well log data is
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mapped onto the time axis using time–to–depth parameters τ .

A few remarks about the various terms of this equation are required. The im-
aged seismic data Sobs is likely to have been processed to a particular (often
zero) phase, which involves estimation of the actual source signature (gleaned
from seafloor or salt-top reflections, or perhaps even explicit modeling of the
physics of the impulsive source), and a subsequent removal of this by decon-
volution and bandpass filtering. The processed data is then characterized by
an ’effective’ wavelet, which is usually more compact and symmetrical than
the actual source signature. This processing clearly depends on the early-time
source signature, so subsequent dispersion and characteristics of the amplitude
gain control (and possible inverse–Q filtering) may also make the ‘effective’
wavelet at longer times rather different than the fixed wavelet established by
the processing. Since the wavelet appropriate for inversion work will be that
applicable to a time window centered on the inversion target, it may be very
different in frequency content, phase and amplitude from that applicable to
earlier times. Thus, we begin with the assumption that the user has relatively
weak prejudices about the wavelet shape, and any more definite knowledge can
be integrated into the well–tie problem at a later stage via appropriate prior
terms.

Deviated wells impose the problem of not knowing precisely the rock properties
in the region above and below a current point in the well, since the log is
oblique. Given that a common procedure would be to krige the log values
out into the near–well region, and assuming the transverse correlation range
used in such kriging would be fairly long, a first approximation is to assume
no lateral variations in rock properties away from the well, so the effective
properties producing the seismic signal are those read from the log at the
appropriate z(t). The wavelet extraction could, in principle, models errors in
the reflectivity calculation, which could then absorb errors associated which
this long–correlation kriging assumption. Another way to think about this
approximation is the leading term in a ‘near–vertical’ expansion. The seismic
amplitudes to use will be those interpolated from the seismic cube at the
appropriate (x, y, t(z)). In this approximation a change in the time–to–depth
mapping will result in a new t′(z), but not a new (x, y). Extraction of these
amplitudes for each possible realization of the time–to–depth parameters must
be computationally efficient.

Wavelet extraction for multiple wells will be treated as though the modeling
parameters at each well are independent (e.g. time–to–depth parameters). The
likelihood function will be a product of the likelihood over all wells. The wavelet
will be modeled as transversely invariant.

The wavelet is parametrized by a suitable set of coefficients over an uncertain
span and will be naturally tapered. Determination of the wavelet span is intrin-
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sic to the extraction problem. The time to depth mapping from, e.g. checkshot
data, will be in general not exact, since measurement errors in first–break times
in this kind of data may not be negligible. We allow subtle deviations from the
initial mapping (‘stretch–and–squeeze’ effects) so as to improve the quality of
the well–tie, and the extent of these deviations will be controlled by a suitable
prior.

Other parameters that may be desirable to model are (1) time registration

errors in the seismic: these are small time errors that may systematically
translate the seismic data in time, and (2) positioning errors: errors that may
systematically translate the seismic data transversely in space. The latter in
particular are useful in modeling the effects of migration errors when using
post–migration seismic data. Since the wavelet extraction may be performed
with data from several wells, the positioning and registration errors may be
modeled as either (a) independent at each location, which assumes that the
migration error is different in widely separated parts of the survey, or (b) syn-
chronized between wells, which may be an appropriate assumption if the wells
are close.

The extraction is also expected to cope with multi-stack data. Here the syn-
thetic seismic differs in each stack because of the different angle used in the
linearized Zoeppritz equations. Because of anisotropy effects, this angle is not
perfectly known, and a compensation error for this angle is another parameter
which is desirable to estimate in the wavelet extraction. Users may also believe
that the wavelets associated with different stacks may be different, but related,
for various reasons associated with the dispersion and variable traveltimes of
different stacks. It is desirable to build in the capacity to permit stretch and
scale relations between wavelets associated with different stacks

Finally, the extraction must produce useful estimates of the size of the seismic
noise, which is defined as the error signal at the well–tie for each stack.

2.2 Wavelet parameterization

2.2.1 Basic parameters

Let the wavelet w(aw) be parametrized by a set of coefficients aw, with suitable
prior p(aw). Like Buland and Omre (2003), we use a widely dispersed Gaus-
sian of mean zero for p(aw). The wavelet is parameterized in terms of a set of
equispaced samples i = −M . . .N (kW in total), spaced at the Nyquist rate
associated with the seismic band edge (typically about δt = 1/(4fpeak)). The
first and last samples must be zero, and the samples for the wavelet at the seis-
mic data rate (e.g. 2,4 ms) are generated by cubic splines with zero-derivative
endpoint conditions. See Fig. 1. Note there are fewer fundamental parame-
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ters than seismic samples. This parameterization enforces sensible bandwidth
constraints and the necessary tapering. Cubic splines are a linear mapping,
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Fig. 1. Parameterization of wavelet in term of coefficients at Nyquist spacing asso-
ciated with band edge (black boxes), and resulting coefficients generated at seismic
time-sampling rate (circles) by cubic interpolation. Cubic splines enforce zero deriva-
tives at the edges for smooth tapering.

so the coefficients at the seismic scale aS are related to the coarse underlying
coefficients aW linearly. Given a maximum precursor and coda length, the two
indices M,N then define a (usually small) set of wavelet models with variable
spans and centering.

For two–stack ties, the default is to assume the same wavelet is used in the
forward model for all stacks. However, users may believe the stacks might
legitimately differ in amplitude and frequency content (far-offset stacks usually
have about 10% less resolution than the near stack). We allow the additional
possibility of ‘stretching and scaling’ the far wavelet (two additional parameters
added on to aw) from the near wavelet to model this situation. The priors
for the additional ‘stretch and scale’ factors are taken to be Gaussian, most
commonly with means close to 1 and narrow standard deviations.

2.2.2 Wavelet phase constraints

Sensible bandwidth and tapering constraints are built into the wavelet param-
eterization. Additionally, users often believe that the wavelet ought to exhibit
some particular phase characteristic, e.g. zero or constant phase. Since the
wavelet phase φ is obtained directly from a Fourier transform of the wavelet
w̃ = F (w(aw)) as φi = tan−1(=(w̃i)/<(w̃i), for frequencies indexed i, a suit-
able phase–constraint contribution to the prior may be written

p(aw) ∼ exp(−
∑

i

(φi(aw)− φ̄)2/2σ2phase)
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where the sum is over the power band of the seismic spectrum (the central
frequencies containing about 90% of the seismic energy). Here φ̄ is a target
phase, either user-specified, or computed as 〈φi(aw)〉 if a constant (floating)
phase constraint is desired. A problem with this formulation is that the branch
cuts in the arctan function cause discontinuities in the prior. To avoid this, we
use the form

pphase(aw) ∼ exp(−
∑

i

(D(w̃i, φ̄)
2/2σ2phase)

where D(w̃i, φ̄) is the shortest distance from the point w̃i to the (one-sided) ray
at angle φ̄ heading out from the origin of the complex w̃ plane. This formulation
has no discontinuities in the error measure at branch cuts.

2.2.3 Wavelet timing

In many instances, users also believe that the peak of the wavelet response
should occur at zero time, so timing errors will appear explicitly in the time–
registration parameters, rather than being absorbed into a displaced wavelet.
Very often, a zero–phase constraint is too strong a condition to impose on
the wavelet to achieve the relatively simple effect of aligning the peak arrival,
since it imposes requirements of strong symmetry as well. This peak–arrival
requirement can be built into the prior with the additional term

ppeak–arrival(aw) ∼ exp(−(tpeak(aw)− t̂peak)
2/2σ2peak),

where t̂peak and σpeak are user–specified numbers, and tpeak(aw) is the peak
time of the wavelet inferred from the cubic spline and analytical minimiza-
tion/maximization. Clearly the peak time is only a piece–wise continuous
function of the wavelet coefficients, so we advise the use of this constraint
only where an obvious major peak appears in the unconstrained extraction. If
not, the optimizer’s Newton schemes are likely to fail.

2.3 Time to depth constraints

2.3.1 Checkshots and markers

The primary constraint on time to depth is a series of checkshots, which pro-
duce data pairs {z

(c)
i , t

(c)
i } with associated time uncertainty σ

(c)
t,i , stemming

primarily from the detection uncertainty in the first arrival time. The depths
are measured (well–path) lengths, but convertible to true depths from the well
survey, and we will assume no error in this conversion. Such pairs can often
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be sparse, e.g. 500ft spacings, and will not necessarily coincide with natural
formation boundaries. See also Appendix 5.

Markers are major points picked from the seismic trace and identified with
events in the logs. They form data triples {z

(m)
i ,∆t

(m)
i , σ

(m)
∆t,i} which are depths

z(m) and relative timing errors ∆t
(m)
i with respect to the time–depth curve

associated with the linearly interpolated checkshot. The picking error is σ
(m)
∆t,i.

These can obviously be converted to triples {z
(m)
i , t

(m)
i , σ

(m)
t,i }, which are the

same fundamental type of data as the checkshot. Here

t
(m)
i = tinterpolated–from–checkshot(z

(m)
i ) + ∆t

(m)
i ,

and σ
(m)
t,i = σ

(m)
∆t,i. This formula is used to convert marker data to checkshot–like

data, and is not intended to imply or induce any correlation between the two
sources of information in the prior.

We use the vector τ = {t
(c)
i , t

(m)
i } (combining checkshots and marker devi-

ations) as a suitable parameterization of the required freedom in the time–
to–depth mapping. We assume that the errors at each marker or checkshot
position are independent and Normal, so the prior for the time–to–depth com-
ponents becomes

p(τi) ∼ exp(−
(t− t

(c,m)
i )2

2σ2t,i
)

The complete time prior distribution p(τ ) =
∏

i p(τi) is truncated to preserve
time ordering by subtracting a large penalty from the log–prior for any state
τ that is non–monotonic.

2.3.2 Registration and positioning errors

A further possibility for error in the time to depth mapping is that the true
seismic is systematically shifted in time by a small offset. Such a registration
error ∆tR is modeled with a Gaussian prior, and independently for each stack.
Similarly, a simple lateral positioning error ∆rp = {∆x,∆y} is used to model
any migration/imaging error that may have mis–located the seismic data with
respect to the well position. This too is modeled by a Gaussian prior p(∆rp) ∼
exp(−(∆x−∆xi)

2/2σ2∆x,i) exp(−(∆y −∆yi)
2/2σ2∆y,i) for well i. Each seismic

minicube (corresponding to each well) will have an independent error, but this
can (optionally) be taken as the same for each stack at the well. Positioning
errors for closely spaced wells can be mapped onto the same parameter. We
write ∆rR = {∆tR,i,∆xi,∆yi} as the full model vector required for these
registration and positioning errors. See also Appendix t2d.
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2.4 Log data

For computational efficiency during the extraction, the sonic and density log
data are first segmented into chunks whose thickness ought not to exceed
λB ≈ 1/6fBE, where fBE is the upper band–edge frequency of the seismic.
We use the aggregative methods of Hawkins and ten Krooden (1978) (also
Hawkins (2001(3)) to perform the blocking, based on the p–wave impedance.
The effective properties of the blocked log are then computed using Backus
averaging (volume weighted arithmetic density average plus harmonic moduli
averages (Mavko et al., 1998)) yielding the triples Dwell = {vp, vs, ρ} for the
sequence of upscaled layers. The shear velocity may be computed from approx-
imate regressions if required (a near–stack wavelet extraction will be relatively
insensitive to it anyway). This blocking procedure is justified by the fact that
the convolutional response of very finely layered systems is exactly the same as
the convolutional response of the Backus–averaged upscaled system, providing
the Backus average is done to ‘first order’ in any deviations of the logs from
the mean block values.

The raw log data and its upscaled values can be expected to have some intrinsic
error, which ultimately appears as an error er of the reflectivity values com-
puted at the interfaces using the linearized Zoeppritz equations. The nature of
errors in well logging are complex in general. A small white noise component
always exists, but the more serious errors are likely to be systematic or spa-
tially clustered, like invasion effects or tool–contact problems. For this reason,
we make no attempt to model the logging errors using a naive model, and
expect the logs to be carefully edited before use.

3 Forward model, likelihood, and the Bayes posterior

The forward model for the seismic is the usual convolutional model of equa-
tion (1). We suppress notational baggage denoting a particular well and stack.
The true reflectivity is that computed from the well log projected onto the
seismic time axis r(x, y, t|τ ) (which is a function of the current parameters
time to depth map parameters τ ).

The reflection coefficients r are computed from the blocked log properties,
using the linearized Zoeppritz form for the p–p reflection expanded to O(θ2)
(top of p.63, Mavko et al. (1998)):

Rpp(B) =
1

2

(

∆ρ

ρ
+

∆vp
vp

)

+Bθ2





∆vp
2 vp

−
2 vs

2
(

∆ρ
ρ

+ 2∆vs

vs

)

vp2



 , (2)
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with notation ρ = 1
2
(ρ1 + ρ2), ∆ρ = ρ2 − ρ1, etc, for the wave entering layer 2

from layer 1 above. Here, the factor B is introduced to model a situation where
the angle θ for a given stack obtained from the Dix equation is uncertain. The
stack has user–specified average stack velocity Vst, event–time Tst and stack
range [Xst,min, Xst,max]. Assuming uniform weighting, the mean–square stack
offset is

〈X2
st〉 =

(X3
st,max −X3

st,min)

3(Xst,max −Xst,min)
, (3)

from which the θ2 at a given interface is computed as

θ2 =
v2p,1

V 4
stT

2
st/〈X

2
st〉
. (4)

Due to anisotropy and other effects related to background AVO rotation (Castagna
and Backus, 1993), the angle may not be perfectly known, so B is introduced
as an additional parameter, typically Gaussian with means close to unity and
small variance: p(B) ∼ exp(−(B − B̄)2/2σ2B). The B parameter can be inde-
pendent for each stack if multiple stacks are used.

The reflection Rpp is computed at all depths z where the blocked log has seg-
ment boundaries, and the properties used in its calculation are the segment
properties from Backus averaging etc. The reflection is then projected onto the
time axis using the current time to depth map and 4–point Lagrange interpo-
lation. The latter approximates the reflection by placing 4 suitably weighted
spikes on the 4 nearest seismic sampling points to the true projected reflection
time (this is an approximation to true sinc interpolation, since sinc interpola-
tion is far too expensive to use in an inversion/optimization problem).

3.1 Contributions to the likelihood

The optimization problem aims at obtaining a synthetic seismic close to the
observed data for all wells and stacks, whilst maintaining a credible velocity
model and wavelet shape. The prior regulates the wavelet shape, so there are
contributions to the likelihood from the seismic noise and interval velocities.
We address these in turn.

3.1.1 Seismic noise pdf parametrization

Physical seismic noise is largely a result of small waves with the same spec-
tral character as the main signal (multiple reflections etc). However, the noise
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process we model, en, is a mixture of this real noise and complex modeling
errors, much of the latter originated in the seismic processing. We take this
as a random signal with distribution PN(en|an), the meta–parameters an (e.g.
noise level, covariance terms etc) having prior p(an).

Probably the simplest approach to the meta–parameters in the noise modeling
is to avoid the issue of the noise correlations as much as possible by subsam-
pling. It is trivial to show that if a random process has, eg. a Ricker-2 power
spectrum (i.e. ∼ f 2 exp(−(f/fpeak)

2)), then 95% of the spectral energy in the
process can be captured by sampling at times

∆Ts = 0.253/fpeak, (5)

where fpeak is the peak energy in the spectrum (and often about half of the
bandwidth). Most practical seismic spectra will yield similar results. To keep
the meta–parameter noise description as simple as is reasonable, we choose
to model the prior distribution of the noise for stack j as Gaussian, with Nj

independent samples computed at this sampling–rate, mean zero, and overall
variance σ2n,j . Since the variance is unknown, it must be given a suitable prior.
Gelman et al. (1995) suggest a non–informative Jeffrey’s prior (PN(σn,j) ∼
1/σn,j) for dispersion parameters of this type, so the overall noise likelihood +
prior will look like

PN(en,σn) ∼ PN(en|σn)p(σn) ∼
∏

stacks j

1

σ
Nj+1
n,j

exp(−en

2/2σ2n,j). (6)

Correlations between the noise level on closely spaced stacks may be significant,
so we assume the user will perform multi–stack ties only on well-separated
stacks, so the priors for each stack are sensibly independent.

3.1.2 Interval velocities

Any particular state of the time depth parameter vector τ corresponds to a
set of interval velocities Vint between checkshot points. It is desirable for these
to not differ too seriously from an upscaled version of the sonic log velocities.
If Vint,log are the corresponding (Backus-upscaled) interval velocities from the
logs (which we treat as observables), we use the likelihood term

p(Vint,log|τ ) ∼ exp(−(Vint(τ )−Vint,log)
2/2σ2Vint)

where σVint is a tolerable interval velocity mismatch specified by the user.
Typically acceptable velocity mismatches may be of the order of 5% or so,
allowing for anisotropy effects, dispersion, modeling errors etc.
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Even in the case that the interval velocity constraints are weak or disabled, a
large penalty term is introduced to force monotonicity in the checkshot points,
since the Gaussian priors will allow an unphysical non-monotonic time-to depth
map.

4 Forming the posterior

For a given wavelet span, the Bayesian posterior for all the unknowns will then
be

Π(aw, τ ,∆rR, B,σn) ∼

p(σn)p(B)p(aw)pphase(aw)ppeak–arrival(aw)
∏

wells i

p(τi)p(∆ri) (prior)

×
∏

wells i

p(Vint,log|τi) (likelihoods)

×
∏

wells i
stacks j

PN(Sobs,ij(x+∆xi, y +∆yi, t+∆tR,i)− (rij(τi) ∗w(aw))|σn)

(7)

The maximum aposteriori (MAP) point of this model is then a suitable es-
timate of the full set of model parameters, and the wavelet can be extracted
from this vector. This point is found by minimizing the negative log posterior
using either Gauss–Newton or standard Broyden–Fletcher–Goldfarb–Shanno
(BFGS) methods (Nocedal and Wright, 1999; Koontz and Weiss, 1982). The
optimizer by default is started at the prior–mean values, with typical scales
set to carefully chosen mixtures of the prior standard deviations or other suit-
able scales. The parameter uncertainties are approximated by the covariance
matrix formed from the quadratic approximation to the posterior at the MAP
point, as per Appendix 1.

In some cases, especially those where registration or positioning terms exist in
the model, the posterior surface is multimodal. The code can then employ a
global optimization algorithm formed by sorting local optimization solutions
started from dispersed starting points, at the user’s request. The starting points
are distributed in a hypercube formed from the registration/positioning param-
eters. This method is naturally more expensive to run than the default. An
illustration of this accompanies Example 7.2.

Where lateral positioning errors are suspected and modeled explicitly, the max-
imum aposteriori parameters obtained in the optimization may not be espe-
cially meaningful if the noise levels are high. Better ‘fits’ to the tie can be
obtained through pure chance as easily as through correct diagnosis of a mis-
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positioning, and users have to beware of this subtle statistical possibility. A
more detailed discussion can be found in Appendix 4. We urge the use of this
facility with caution.

4.1 The uncertain span problem

From the user–specified maximum precursor and coda times, a set of candidate
wavelet models with indices M,N can be constructed which all lie within the
acceptable bracket. These can be simply enumerated in a loop. The posterior
space is then the joint space of models and continuous parameters, and each
model is of different dimensions. We treat the wavelet span problem as a model–
selection problem where we seek the most likely wavelet model k (from among
these k = 1 . . . Nm models) given the data D (D = {Sobs, Dwell}). These models
are assumed to have equal prior weight. The maximum–aposteriori wavelet
model measured by the marginal likelihood of the model k

P (k|D) ∼
∫

Π(aw, τ ,∆rR, B,σn)dawdτd∆rRdBdσn (8)

is an appropriate measure to determine the maximum likelihood wavelet. For
linear models, it is well known that the overall model probability computed
from this relation (and the associated Bayes factors formed by quotients of
these probabilities when comparing models) includes a strong tendency to
penalize models that fit only marginally better than simpler models. A simple
approximation to the integral is the standard Bayesian information criterion
(BIC) penalty (Raftery, 1996), which adds a term 1

2
np log(nd) to the negative

log–posterior, nd being the number of independent data points (which will
be the number of near–Nyquist samples of the noise Sobs − Ssynth when the
mismatch trace is digitized over the time–interval of interest), and np is the
number of parameters in the wavelet. We do not use the BIC directly, but
evaluate the integral (8) using the Laplace approximation (Raftery, 1996),
based on the numerical posterior covariance matrix C̃ obtained in Appendix 1.

Users are sometimes confused as to why long wavelets yield better ties than
short ones, and how to choose the length. Use of the formal marginal model
likelihood immediately solves this problem: the better ties are invariably not
statistically significant. The Bayes factor concentrates the marginal likelihood
on the wavelet span of most statistical significance.

Readers unfamiliar with model–selection problems should be aware that the
choice of the prior standard deviations for the wavelet coefficients is no longer
benign when there are different size models to compare. If the prior standard
deviations are chosen too large, the model–selection probabilities suffer from
the Lindley Paradox (Denison et al., 2002) and the posterior probability always
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falls on the shortest wavelet. To prevent this, the characteristic scale in the
prior is chosen about 3 times larger than the RMS seismic amplitude divided
by a typical reflection coefficient.

The code computes a normalized list of all posterior wavelet–mode probabili-
ties, so if the user requests realizations of the wavelet from the full posterior,
these are sampled from the joint model and continuous–coefficient space. Very
often, the posterior probability is concentrated strongly on a particular span.

5 Questions of statistical significance

Even with a sophisticated well–tie code such as that described in this paper,
wavelet extraction is not a trivial workflow. In many cases, the main reflections
in the data do not seem to correspond very well to major reflections in the well
logs, and well-matched synthetics can be produced only by switching on many
degrees of freedom, such as positioning, registration errors, and highly flexible
checkshot points, with narrow time gates for the extraction. In such situations,
the tie may well be totally spurious. A useful flag for such a situation is when
the posterior probability lands almost entirely on the shortest wavelet, and
also when the quality of the tie degrades rapidly with increasing time gate
width.

There are ways to address the problem more rigorously. The usual statistical
apparatus required to detect such situations requires a forward model that can
generate all the seismic data, and parameter uncertainties are then estimated
using a Monte Carlo scheme, using an ensemble of extractions on a set of syn-
thetic data sets. A closely related ‘null’ experiment is to generate synthetic
plausible seismic data sets, totally uncorrelated from the well data, perform
an ensemble of extractions, and see where the true extraction falls on the
Monte–Carlo distribution based on the synthetic ensemble. Strictly speaking,
when we model registration or positioning errors, this scheme is possible only
if we construct a full geostatistical earth model from which we can generate
realizations of the seismic minicube. This is a detailed, fussy piece of model-
ing, requiring both categorical and continuous rock property modeling for an
appreciable volume of space.

Instead, we make a ‘poor–man’s’ approximation to this model, generating seis-
mic minicubes using a FFT method based on the power spectrum

S(ω) = w2
z exp(−w

2
z) exp(−(w

2
x + w2

y))

where wz is scaled from a Ricker–2 fit to the data’s average vertical power
spectrum, and wx,y are scaled so as to give a lateral correlation length specified
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by the user. The CDF of the final minicube is then mapped to that of the data,
so the univariate statistics of the data minicubes are preserved. The latter step
is important, as processed seismic is not univariate Gaussian, and the wavelet
extraction is sensitive to amplitudes.

This Monte–Carlo test can be run in cases where the user is suspicious of
the meaningfulness of the fit, and generates a CDF of the noise parameters
obtained over the Monte–Carlo ensemble. This should have no appreciable
overlap with the true–extraction noise best estimates in cases of meaningful
ties. An example is shown in section 7.3.

6 The code

The wavelet extraction code is written in java, and based largely on efficient
public domain linear algebra 1 and optimization (Koontz and Weiss, 1982)
libraries, along with the seismic handling libraries of its companion software
Delivery 2 . It comprises about 50k lines of source code. Wavelet extraction is
a relatively light numerical application: simple extractions take seconds and
more complex problems may take minutes.

Users are expected to be able to provide seismic data in big–endian ‘minicubes’
centered at each well (the seismic resides entirely in RAM), plus log data in
ASCII LAS or simple geoEAS format. Checkshots and well surveys in a simple
geoEAS are also required. Details of these formats are given in Appendix 2,
but see also Appendix 5.

Outputs are a mixture of seismic SU 3 files for wavelets, synthetic–and–true
SU seismic pairs, and simple ASCII formats for the parameter estimations
and uncertainties. A small graphical visualization tool (extractionViewer) is
provided as part of the distribution which produces the typical cross-registered
log and seismic displays shown in the examples. Details of the output files are
in Appendix 3.

The code is available for download (Gunning and Glinsky, 2004),[3], under a
generic open–source agreement. Improvements to the code are welcome to be

1 Hoschek, W., The CERN colt java library. http://dsd.lbl.gov/~hoschek/
colt/.
2 Gunning, J., 2003. Delivery website: follow links from http://www.petroleum.

csiro.au.
3 Cohen, J. K., Stockwell, Jr., J., 1998. CWP/SU: Seismic Unix Release 35: a free
package for seismic research and processing,. Center for Wave Phenomena, Colorado
School of Mines, http://timna.mines.edu/cwpcodes.
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submitted to the author. A set of simple examples is available in the distribu-
tion, and are briefly illustrated here.

7 Examples

7.1 Simple Single Reflection

The simplest example possible is a set of logs that produce a single reflec-
tion, so the synthetic trace reflects the wavelet directly. Two synthetic data
minicubes were generated from the logs with zero and a modest noise level.
With the noise–free minicube, the wavelet extracts perfectly, and the poste-
rior distribution converges strongly on the wavelet model just long enough to
capture the true wavelet energy.

More interesting is the extraction on the noisy minicube, shown in Fig. 2. Here
the central checkshot point was deliberately shifted 10ms, and it shares a 10ms
uncertainty with all the checkshot points spaced at 500ft. The naive extracted
wavelet is clearly offset. A symmetrical wavelet can be forced by switching
on a zero–phase constraint, and the checkshot point then moves about 10ms
backwards, to allow the zero–phase recovered wavelet to still generate a ‘good’
synthetic.

This extraction is run with the command line
% waveletExtractor WaveletExtraction.xml --dump-ML-parameters

--dump-ML-synthetics --dump-ML-wavelets --fake-Vs -v 4 -c -NLR

where the main details for the extraction are specified in the XML file
WaveletExtraction.xml. The XML shows how to set up an extraction
on a single trace, where the 3D interpolation is degenerate. The runtime
options correspond to frequently changed user preferences. Their meanings
are documented by the executable waveletExtractor in SU style self–
documentation [2]. Amongst the most important options are a) those related
to the set of wavelet spans (c.f. section 4.1): -c,-l denote respectively a
centered set of wavelets, or the longest only. b) Log-data options: -NLR;
assume no reflections outside log (so entire log can be used), --fake-Vs;
concoct approximate fake shear log from p–wave log and density.

Standard graphical views of the MAP extraction are obtained with
% extractionViewer MLgraphing-file.MOST LIKELY.well log.txt

and the most likely wavelet with (on a little–endian machine)
% cat MLwavelet.MOST LIKELY.su | suswapbytes | suxgraph

17



0 0.5 1 1.5 2

rho
0 5000 10000

sonic Vp
0E0 5E3 1E4

V-interval TVD

6200

6300

6400

6500

6600

6700

6800

6900

7000

7100

7200

7300

7400

7500

7600

7700

7800

7900

8000

8100

8200

8300

8400

8500

8600

8700

8800

8900

9000

9100

9200

9300

MD

6200

6300

6400

6500

6600

6700

6800

6900

7000

7100

7200

7300

7400

7500

7600

7700

7800

7900

8000

8100

8200

8300

8400

8500

8600

8700

8800

8900

9000

9100

9200

9300

-5E-2 0E0 5E-2

synthetic
-5E-2 0E0 5E-2

seismictime(ms)

1100

1120

1140

1160

1180

1200

1220

1240

1260

1280

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1520

1540

1560

1580

1600

1620

1640

1660

1680

0 0.5 1 1.5 2

rho
0 5000 10000

sonic Vp
0E0 5E3 1E4

V-interval TVD

6200

6300

6400

6500

6600

6700

6800

6900

7000

7100

7200

7300

7400

7500

7600

7700

7800

7900

8000

8100

8200

8300

8400

8500

8600

8700

8800

8900

9000

9100

9200

9300

MD

6200

6300

6400

6500

6600

6700

6800

6900

7000

7100

7200

7300

7400

7500

7600

7700

7800

7900

8000

8100

8200

8300

8400

8500

8600

8700

8800

8900

9000

9100

9200

9300

-5E-2 0E0 5E-2

synthetic
-5E-2 0E0 5E-2

seismictime(ms)

1100

1120

1140

1160

1180

1200

1220

1240

1260

1280

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

1520

1540

1560

1580

1600

1620

1640

1660

1680

A) Mis-timed wavelet B) Zero-phase enforced   

Fig. 2. Example of recovery of wavelet from single reflection with noisy data. A) Case
where time-to-depth error forces mis–timing of wavelet. B) Case where phase–con-
strained prior forces timing error to be absorbed in uncertain time-to-depth map.
Viewing program displays co–registered time, total vertical depth (TVD), measured
depth (MD) scales for MAP (best–estimate) time-to-depth model. Also shown are (in
order) density logs ρ, sonic vp, Vint,log (interval velocity from upscaled blocked sonic),
synthetic seismic (r(x, y, t|τ ) ∗w), observed seismic Sobs(x+∆x, y +∆y, t+∆tR).
Viewing display can toggle on acoustic impedance, a blocked vp log, slownesses etc.

7.2 Standard dual–well extraction

Here we illustrate a typical, realistic dual well extraction for two widely sep-
arated wells ‘Bonnie–House’ and ‘Bonnie–Hut’. The checkshots are of high
quality (bar a few points), so time—to–depth errors are confined to regis-
tration effects only. We illustrate here the peak–arrival constraint prior (c.f.
section 2.2.3), which forces the wavelet peak amplitude to arrive at t = 0±1ms.
Multi-start global optimization was used. A Monte–Carlo study of the extrac-
tion here shows the extraction to be significant with very high probability. See
Fig. 3.

The vertical wells ‘Bonnie–House’ and ‘Bonnie–Hut’ have relatively good qual-
ity checkshots. For this reason, time–registration effects were the only unknown
parameters included in the time-to-depth mapping. This kind of problem cre-
ates an obvious non–uniqueness in the inverse problem if the wavelet is long
enough to offset itself in time by the same offset as the registration error. The
prior in the registration error in principle should remove the non-uniqueness
of the global minimum in this case, but a variety of poorer local minima do
appear in the problem, in which the local optimizer is easily trapped.

This problem illustrates a typical interactive workflow. 1) The extraction is per-
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Fig. 3. Example of typical dual–well extraction for ‘Bonnie’ wells: A) Tie at ‘Bon-
nie–House’, B) ‘Bonnie–Hut’. Note close agreement between interval velocities and
sonic logs. C) Maximum likelihood (ML) wavelet for each model–span, with ML
wavelet the solid curve. D) Wavelet realizations from full posterior (section 4.1)
showing small posterior uncertainty. E) Example of the acoustic impedance block-
ing on a section of the Bonnie–House log.

formed with no phase or timing constraints, often for a single long wavelet (the
-l option), on each well at a time. The resulting wavelets are then examined
to see if the peak response (assuming the expectation of a symmetric–looking
wavelet) is systematically shifted in time. Very bad ties may be noted, and the
guilty wells excluded. 2) Large systematic offsets can then be directly entered
into the XML file for each well (in consultation with the imaging specialist!),
possibly allowing registration timing errors around the shift. 3) The individual
extractions can then be rerun, confirming that major timing problems have
been removed 4) A variety of joint–well extractions may then be attempted,
perhaps turning on phase or peak–arrival constraints.

In principle, the manual setting of offsets is something that can be auto-
mated as part of a (expensive) global optimization routine (available using
the --multi-start heuristic), but users usually want to examine the well–ties
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on an individual basis before proceeding to joint extractions. It is often the
case that imaging around a well is suspicious for various reasons – which trans-
lates into poor ties, so the best decision may be to omit the well altogether,
rather than lump it into what may otherwise be a good joint extraction.

The actual extraction here is run with
% waveletExtractor BonnieHousePlusBonnieHut.xml --fake-Vs

--dump-ML-parameters --dump-ML-synthetics --dump-ML-wavelets -v 4

[--constrain-peak-arrival 0 1] -c --multi-start -NLR

An illustration of the complexity of the basins of attraction is shown in Fig. 4.
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Fig. 4. Example of basins of attractions for two registration parameters for Bon-
nie–House and Bonnie–Hut. Grayscale represents MAP negative log–posterior value
obtained starting from the values on the axes. All other parameters are started at
their prior means. A) Basins for the problem without peak–arrival constraints B)
Case with peak–arrival constraint ±1ms (--constrain-peak-arrival 0 1). The
darkest shade is the global minimum. Note how peak–arrival term in prior greatly
enlarges basin of attraction of desired global optimum, without affecting overall
MAP value.

7.3 AVO extraction for ‘Bitters’ well

Here we illustrate a typical single–well extraction on log data that has a strong
AVO character. The two stacks are at about 5 and 30 degrees. The seismic
here was generated synthetically, with a large level of white noise added to
the reflection sequence before convolution. The extraction is then of poorish
quality, but still statistically significant at about the 10% level, even though
the most likely wavelet corresponds to the shortest model. The same wavelet
was used for both stacks, so no wavelet stretch–and–scale parameters were
used.
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Fig. 5. A) AVO character of synthetic seismic using Ricker–2 wavelet. Note strong
variation around 1.5s. B) Two–stack extraction screen capture: far–stack synthetic
and observed traces are appended at the right. C) ML wavelets vs. wavelet length
(mode) with no peak–constraints. ML wavelet (boldest trace) is shortest mode. D)
Same, with peak–constraints in prior. E) Recovered wavelet vs underlying wavelet
used to generate synthetics.

Here the XML shows how to set up an extraction on a single seismic line,
where the 3D interpolation is approximated by perpendicular ’snapping’ onto
the 2D line. The extraction module can be used to generate AVO gathers of
the kind seen in Fig. 5a). The command
% waveletExtractor Bitters.xml --dump-ML-wavelets -v 4 -NLR

--make-synthetic-AVO-gather 80 2

was used in this example, which generates 80Hz synthetics sampled at 2ms.
Angles are stored in the SU header word f2. Displays can then be obtained
via, e.g.
% cat synth seis.Bitters.las.AVO-gather.su | [suswapbytes]
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The synthetic seismic minicubes are generated using the --make-synthetic

freq dt noise option, so, e.g.
% waveletExtractor Bitters.xml -v 4 -NLR --dump-ML-wavelets

--make-synthetic 80 2 2.3

makes a pair of synthetic minicubes using a Ricker 2 wavelet of 80Hz band
edge, sampled at 2ms, with a noise reflectivity 2.3 times the RMS reflection
power measured in the logs added on to the log reflectivity. The time to depth
curve is the prior mean read from the checkshot.

The second stack is specified naturally in the XML file, and the extraction
run with
% waveletExtractor Bitters.xml --dump-ML-parameters

--dump-ML-synthetics --dump-ML-wavelets -v 4 -c -NLR

Significance testing is obtained by the command
% waveletExtractor Bitters.xml --dump-ML-parameters

--dump-ML-synthetics --dump-ML-wavelets -v 4 -c -NLR

--monte-carlo 10

which specifies a lateral correlation length of 10 traces in the Monte–Carlo
synthetic minicubes. The position of the ML noise parameters with respect to
the Monte–Carlo noise parameter distribution is found by examining the file
MC ParameterSummary.txt. In this case, they sit about 10% of the way into
the Monte–Carlo distribution.

With very noisy data sets like this one, use of discontinuous or strongly non-
linear terms in the likelihood such as the phase–constraint or wavelet–peak
terms is somewhat dangerous. If the extraction is barely significant without
these constraints (a suggested first test), it will be even less so when they are
added.

8 Conclusions

We have introduced a new open–source software toolkit for performing well–
ties and wavelet extraction. It can perform multi–well, deviated well, and
multi–stack ties based on imaged seismic data, standard log files, and check-
shot information. Uncertainties in the time–to-depth conversion and the imag-
ing and wavelet–aesthetic constraints are automatically included by the use
of Bayesian techniques. The module produces maximum–apriori (’best’) es-
timates of all the relevant parameters, plus measures of their uncertainty.
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Stochastic samples of the extracted wavelet can be produced to illustrate the
uncertainty in the tie, and Monte Carlo tests of the well–tie significance can
be performed for highly suspicious ties. Our experience is that the wavelet and
noise estimates produced are of critical importance for inversion packages like
Delivery and many other applications.

Inputs for the module are common seismic data minicubes, well log files, simple
ascii representations of checkshot information, and a simply–written XML file
to specify all the needed parameters. Users will be readily able to tackle their
own problems by starting from the provided examples.

The authors hope that this tool will prove useful to the geophysical and reser-
voir modeling community, and encourage users to help improve the software
or submit suggestions for improvements.
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Appendices: (supplementary material on journal archive)

Appendix 1: Bayesian update formulas for approximate multi-Gaussian
posteriors including the noise parameters

The standard linear model with a Jeffreys prior on a single noise parameter has
a simple analytical posterior featuring a (right skewed) Inv–χ2 marginal distri-
bution for the noise (Gelman et al., 1995, section 8.9). Although this posterior
is not strictly integrable to obtain a marginal model likelihood, a Gaussian
approximation at the MAP point will be. When there are multiple noise pa-
rameters and some parts of the likelihood are not scaled by the unknown noise,
the posterior is somewhat messier. The amount of data commonly available
in well–tie problems is usually sufficient to make the posterior distribution of
the noise components fairly compact, so will develop the relevant formulae on
the assumption that a full multi–Gaussian form for the joint model and noise
parameters is adequate.

Since the noise posteriors are usually right skewed, it is sensible to work in
terms of the joint model vector M = {m,m(n)} where m(n) is defined as

m
(n)
j = log(σstack j), the noise level for stack j. The non–noise components

m are formed from the wavelet components aw (and coupling parameters for
the coupled near/far wavelet mode of operation), time to depth map knots τ ,
positioning and registration errors ∆rR and AVO scale term B respectively:

m ≡ {aw, τ ,∆rR, B}.

We assert a Gaussian prior for M of form P (M) = N(M̄, CM), where CM =
diag{Cp, C

(n)
p } and the C(n)

p entries for noise components m(n) are very weak
(we choose the mean to be about the log of the signal RMS, and the standard
deviation large on the log scale), and absorb (for computational convenience)
the Jeffrey’s noise prior and wavelet peak/phase prior terms into the collected
likelihood

L(y|M) =
PJeffreys(m

(n))

|CD(m(n))|1/2
exp(−(y − f(m))TCD(m

(n))−1(y − f(m))/2).

This likelihood collects all non–Gaussian terms in (7), so y is an ‘equivalent
data’ vector, formed by the concatenation of the seismic data for all wells
and stacks, sonic–log derived interval velocities, and (from the prior) desired
phase/timing characteristics of the wavelet. Similarly f(m) is the concate-
nation of the synthetic seismics, model–derived interval velocities, and the
wavelet–phase/timing measures. Only that part of CD(m

(n)) pertaining to the
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seismic mismatch depends on m(n). Note that CD is diagonal, with exp(2m
(n)
j )

terms for the seismic mismatch on stack j, σ2Vint terms for the interval veloci-
ties, and σ2phase, σ

2
peak–arrival terms for the wavelet phase/timing.

Under the logarithmic change of variables, the Jacobean and coefficient of the
above equation conspire to yield the log-likelihood

− log(L(y|M)) = eT .m(n) +
1

2
(y − f(m))TCD(m

(n))−1(y − f(m)).

where ej = Nstack j , the number of seismic mismatch data points for stack j.
If all terms in the log–likelihood and prior are expanded to quadratic order
in {m,m(n)} around some current guess M0 = {m0,m

(n)
0 } and collected, the

resulting quadratic form corresponds to a posterior Gaussian distribution for
M which may be solved using the following expressions:

∆ỹi=
yi − fi(m0)

C
1/2
D,ii

(9)

X̃ij =
fi(m0 + δmj)− fi(m0)

δmjC
1/2
D,ii

(sensitivity matrix from finite diffs.) (10)

Q̂i,j =−2δI(i),j∆ỹj (Nstacks× dim(y) matrix) (11)

P̃ij =2
∑

k

(∆ỹk)
2δI(k),iδI(k),j (Nstacks ×Nstacks matrix) (12)

where I(i) is an indicator variable that is the index of the stack–noise param-
eter in m(n) that applies to component i in the ‘data’ vector y. It is zero for
non seismic–mismatch components.

With these definitions, the linear system for the model update ∆M is







C−1p + X̃T X̃ −X̃T Q̂T

−Q̂X̃ C(n)-1
p + P̃





 ·







∆m

∆m(n)





 =







C−1P (m̄−m0) + X̃T∆ỹ

−e− C(n)−1
p (m

(n)
0 − m̄(n))− 1

2
Q̂∆ỹ







(13)

The update then has mean M̄′ = M0 +∆M and a covariance C̃ which is the
inverse of the coefficient matrix in (13):

C̃ ≡







C−1p + X̃T X̃ −X̃T Q̂T

−Q̂X̃ C(n)
p + P̃







−1

. (14)

These update formula form the basis of a Newton scheme for finding the maxi-

26



mum aposteriori point for a particular model with wavelet vector aw. The RHS
of (13) is effectively a gradient of the posterior density, so the updates vanish
when the mode is reached. The actual implementation is a typical Gauss–
Newton scheme with line searches in the Newton direction and additional
step-length limits applied for big Newton steps. Laplace estimates based on
the determinate of the final C̃ are used in forming the marginal model likeli-
hood.

Appendix 2: Data input forms

The data needed to perform the wavelet extraction should be in the following
forms

• Configuration file. For a particular extraction, the configuration is defined by
an XML file which sets up all necessary parameter choices and file names. It
is controlled by a schema file (XSD), so configuration is simple with the BHP
XML schema-driven editor supplied with the distribution. The schema is
located at au/csiro/JamesGunning/waveletextraction/xsd/ relative to
the root of the distribution, and the editor at scripts/xmledit.sh. Certain
self–documenting (SU style) runtime flags are able to modify the behavior
at execution for frequently chosen options. We recommend users read the
self docs carefully and follow the examples.

• Seismic data as a ‘mini–cube’, for each well, in big–endian SU format. Inline,
crossline and gx,gy (group coordinate) header fields need to be correctly set.
The cube should be big enough to safely enclose each well on the desired
extraction time interval, but not so large as to swamp memory (10x10 cubes
are typically fine for straight holes). If x,y headers are not available, a triplet
of non–collinear points can be specified in the XML file which enables the
code to map inline,crossline to x,y. Single line or trace seismic files are also
acceptable, provided suitable flags are set in the XML.

• Log data is read in ascii, either standard ascii LAS files or the geoEAS
format used by GSLIB (Deutsch and Journal, 1998). The critical depth to
be specified in these files is measured depth (MD) along the well trajectory.
There must be density and DT (slowness) fields for the sonic p–wave and
shear logs. A rudimentary commandline switch (--fake-Vs) will concoct a
placeholder shear log from the p–wave log if shear is not available, which is
useful for near–normal incidence extractions.

• UTM files with the well trajectories. These are geoEAS files, which must
have x, y, MD and TVD columns. Kelly bushing data will be required to
convert to true depth TVD.

• Checkshot data. Again, geoEAS format. We require MD, T, sigma T columns.
• Markers (optional): geoEAS format also, with MD, T, sigma T columns.
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A note on units: the code performs automatic time units detection for time
data, which is expected to be input in either s or ms. All density (mass)
units cancel internally. Equation (2) involves a velocity ratio from log data to
stacking–velocity Vst (see eqn (3)), and the code will again attempt to auto–
detect a feet vs meters difference here (logs are commonly in µS/ft, Vst may
be in m/s). Another velocity ratio occurs in (3.1.2); again, auto–detection is
performed, since Vint(τ ) is derived from a checkshot that may be imperial or
metric. The auto–detection code is based on the assumption fact that velocities
will be specified in m/s or ft/s, and that sonic logs will be in µS/ft or (very
unusually) metric.

Users are recommended to look at the examples in the distribution closely
when setting up their own problems.

Appendix 3: Outputs

A variety of outputs are generated by the code. Many of these are selectable
by commandline switches (the code self–documents like SU codes). All SU
outputs are big–endian. In roughly diminishing order of importance, these are

• ASCII dumps of the cross-registered logs, observed and synthetic seismic, for
each well and wavelet span (typically MLgraphing-file.*). Used as direct
input for the ExtractionViewer module.

• Maximum likelihood (ML) wavelet, SU format, for each wavelet span, and
overall (MLwavelet.*.su).

• ASCII files of the most likely parameter values and uncertainties (diagonal
entries of the posterior covariance matrix), for each wavelet span, and overall
(MLparameters.*.txt).

• Multiple realizations of the wavelets from the posterior, also SU format
(wavelet realisations.su).

• Maximum likelihood 5–trace seismic sets along the well trajectory, for the
five quantities {observed–seismic, synthetic seismic, reflectivity, x, y}, again,
for each wavelet span, and overall (MLsynth plus true seis.*.su) . These
are very useful for third party software applications. Two extra traces for P
and S reflectivity can be obtained with --dump-PS-reflectivity.

• ASCII files for the most likely time-to–depth map, for each well, for each
wavelet span, and overall (MLtime-to-depth-map.*.txt)

• ASCII files of the most likely wavelet phase spectrum, for each wavelet span,
and overall (MLwavelet-phase-spectrum*).

• ASCII dumps of the well log blocking (* blocked.txt).
• ASCII dumps of negative log–posterior cross-sections of the posterior sur-

face, shown as slices for each model parameter (posteriorXsection*.txt).
These are useful for checking for possible multimodality, or serious non–
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linearity.

Interpretation of the time scales in these files requires some diligence; read
especially Appendix 5.

Appendix 4: Issues in positional uncertainty modeling

When using the extraction model with general positioning/registration param-
eters, this amounts to using a generalized non–linear regression of form

Sobs(m) = r(m) ∗w(m) + en,

where some parameters in m determine (by continuous interpolation) the local
trace data Sobs(m) to be used in the wavelet extraction.

In this kind of model, one has to be wary of the optimization ’latching’ on to a
particularly favorable location parameter which is controlled merely by chance
rather than a genuinely better fit to the regression model. A better insight into
this problem may be obtained by examining a simplified discrete ‘choose–the–
data–set’ problem, in which spatial fluctuations in y are mimicked by a choice
of one of two data sets y1 or y2, and the ‘choice’ parameter is controlled by the
Bayes factors at the maximum likelihood point. We can then examine how the
expected fluctuations in the Bayes factor affect the uncertainty in the ‘choice’
parameter by Monte–Carlo methods.

A canonical linear regression model for a specific data set y would be

y = X.m+ en

where X is the design matrix and en ∼ N(0, σ2) is the noise. The standard
likelihood is

− log(L(d|m)) ∼ (y −X.m)T (y −X.m)/2σ2 + n log(σ)

A Jeffrey’s prior for the noise variance σ2, coupled with an independent Gaus-
sian N(0,Σm) for the coefficients leads to an improper posterior marginal prob-
ability for the model (Gelman et al., 1995), so we use a class of conjugate priors
– Zellners’ g-priors (Zellner, 1986) – which leads to simple analytic forms for
the posterior. These priors take the form

p(σ2)∼ 1/σ2 (15)

p(m|σ2) =N(0, gσ2(XTX)−1) (16)
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where g is a single hyper-parameter. For the linear model, the posterior marginal
probability has the simple form

Π =
∫

(L(d|m)p(m|σ2)p(σ2)dmdσ2 ∼ (1 + g)(n−k−1)/2(1 + g(1−R2))−(n−1)/2

where there are n data points, k parameters inm, and R2 is the usual coefficient
of determination. The Bayes factor for two identical models fitted to different
data sets (traces) y1 and y2 is then

B12 =

(

(1 + g(1−R2
1)

(1 + g(1−R2
2))

)

−(n−1)/2

.

It is instructive to evaluate this quantity for realistic models of the relative
fluctuation in R1 and R2 as we imagine extracting the data sets y1, y2 from
a trace in a typical near–well region. To illustrate, we have fitted the ‘noisy
straight line’ data sets(s)

y(1,2),i = 1 + i/n+ qi + ε(1,2),i i = 1, 2 . . . n

for n = 100 data points i = 1, 2 . . . n, with X describing a standard linear
model, q ∼ N(0, 0.252) a fixed (shared) error realization of relative RMS am-
plitude typical for a well–tie, and the two samples y1, y2 distinguished by
the ε(1,2),i term, with the setting ε(1,2),i ∼ N(0, 0.052) emulating small spatial
fluctuations.

Different samples of y are generated by different realisations of ε. We have
used the recommended setting g = n to set the prior covariance g(XTX)−1

to be O(1) (see Zellner (1986) and Clyde 4 for a more extensive discussion of
the role of g). Under this model, the Monte–Carlo distribution of B12 formed
when y1 and y2 are drawn from different realisations of ε (for a fixed, random
q), is illustrated in Fig. 6. Large fluctuations in the Bayes factor associated
with ‘position’ (of which ε is the surrogate) are induced by the relatively weak
(5%) additional noise. It is easy to imagine that the deep local minima associ-
ated with these large Bayes factors will also occur in the full nonlinear wavelet
extraction problem, where the ‘choice’ parameter is a continuous spatial vari-
ables, rather than a discrete label. If so, it is likely that strongly constrained
positioning parameters (associated with deep local minima in the map of the
Bayes factor as we move around in the near–well region) are not trustworthy.

In summary, we recommend using the lateral position modeling capabilities of
this package with extreme caution. Particular skepticism ought to be exercised

4 Clyde, M., George, E. I., 2003. Model uncertainty. Statistical and Applied Math-
ematical Sciences Institute Technical Report #2003–16, see www.samsi.info.
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Fig. 6. Variation in Bayes factor due to trace variations of the order of 5% added to
a linear model. Note the logarithmic scale. The wide variations in the Bayes factor
would lead to unjustifiably strong conclusions about the optimal positioning of the
seismic data if their (at least partial) origin in pure chance is not considered.

with respect to the MAP Hessian–derived standard deviations attached to the
positioning parameters.

Appendix 5: Detail on the time and depth fields in the log, survey
and checkshot data, plus output time scales

The extraction code has two notions of depth: i) one connected to the depth
column of the log files (“MD”), which must be consistent between log files, the
survey, and the checkshot, and ii) one tied to some notion of TVD (usually
subsea (SS), for a marine survey), which is obtained from the survey files. The
link between the two is the survey file, which contains both an MD and TVD
column. It doesn’t really matter where MD is measured from (e.g. the kelly
bushing (KB), or perhaps the surface), so long as the “MD” used in the survey
file is the same as the “MD” in the log file and the “MD” in the checkshot
file. It also doesn’t matter exactly what the datum is for TVD; the outputs
are given in TVD as well as MD for user convenience.

For time scales, the time in the checkshot must have the same meaning as the
time in the seismic minicubes, so this is usually TWT vertical (usually SS for
marine data). Service companies that provide checkshot data virtually always
provide a vertical TWT field and a MD field, but occasionally one is unlucky
and the MD field has been lost in favour of the TVD, in which case the MD
field will need to be recovered from the TVD entries, the survey file, and some
interpolation tool such as Matlab/Mathematica. Most commonly, one ends up
with MD from KB, and TVD from SS, and TWT vertical.

Users need to be careful in interpreting seismic trace outputs when the stack–
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specific time-registration parameters are used. The parameters tagged <time -
to depth local systematic time shift mean ms> in the XML file translate the
seismic minicubes in time, not the checkshot data. The general parametri-
sation allows for different registration errors for each stack, in which case
the registration errors cannot be simply absorbed into a single new time–
to–depth mapping. But in the case that there is only one stack, or the option
--synch-stacks is supplied, there is then a unique registration error applica-
ble for each well, and this can in principle be absorbed into the time–to–depth
map (or checkshot). If the commandline and parameters permit such a pos-
sibility, the extractor outputs will include a second time scale corresponding
to the seismic minicube time scale, which will facilitate interpretations on the
origial seismic minicubes. Specifically

• The (MLsynth plus true seis.*.su) files will be written using the original
seismic minicube times. Resetting to checkshot time is always possible by
resetting the f1 header word, i.e. subtracting the posterior estimate of the
required t shift* parameter in the matching MLparameters.* file.

• The MLgraphing-file.* files have the extra seismic time scale, which the
extractionViewer will display clearly.

• The MLtime-to-depth-map.*.txt files (a–posteriori time–to–depth maps)
will contain an extra seismic time column.

• If requested (-b), the blocked log files (* blocked.txt) will also contain the
checkshot time scale and seismic time scale.

Appendix 6: Correlated noise estimates

In the case of multi–stack extractions, the error process ∆y = y − f(m)
central to the discussion of Appendix 1, which contains two blocks of entries
for “near” and “far” stacks, will be correlated between stacks. This is due to
common terms in both the forward physics model and the imaging algorithms.
Since the prior information on the noise parameters is very weak, the MAP
estimate of the noise σn for each stack j can be shown to be

σ2nj =
1

Nstack j

∑

i

(yi − f(m)i)
2,

coinciding with the vanishing of the RHS of equation (13). Defining the matrix
(∆y)ji = yji−f(m)ji for stack j and samples i running over the (subsampled)
seismic–mismatch amplitudes, the full noise covariance matrix MAP estimate
can be defined as

(σ2
n)jj′ =

1

Nstack

∑

i

(yji − f(m)ji)(yj′i − f(m)j′i),
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taking (as is practically the case) Nstack j = Nstack for all stacks. More suc-
cinctly, we can write

σ
2
n =

1

Nstack

∆y∆yT ,

and further define

σ
2
n = diag(σ2

n)
1/2.ρ.diag(σ2

n)
1/2,

so diag(σ2
n)

1/2 is a diagonal matrix of the “noise standard deviations” and
ρ is a symmetric correlation–coefficient matrix (with unit diagonals) whose
off-diagonals encapsulate the correlation between stacks. The diag(σ2

n)
1/2 es-

timates appear as noise stack * entries in the MLparameters.* files, and the
off-diagonal elements of ρ are named noise corr coeff * *. Experience shows
that typical correlation–coefficient entries might be around ρ ∼ 0.3− 0.4.

6.1 Applications

Correlated noise estimates can in principle be introduced to applications like
Delivery (Gunning and Glinsky, 2004) or sparse spike inversion. In general,
the log–posterior or objective function will look like

χ2 =
1

2
∆yT .(σ2

n)
−1.∆y + Bayesian prior terms or regularisation terms

and we expect the effect of increasing correlation in the stack–error-processes
to decrease the precision of estimated parameters, since the extra data’s partial
redundancy is being explicitly taken into account. In the limit of full correla-
tion, the posterior estimates will be equivalent to only a single stack inversion.
The advantage of this formalism is that it prevents the creation of artificially
precise estimates of inversion parameters via “double–dipping” into the data.
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