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3 I Important characteristics of SNL approach

» Data Science feeds Decision Science
o See MatrixDS: https://tinyurl.com/DAAG19-MatrixDS

o Data Science provides statistical estimates of risks and uncertainties, inputs to Decision Science

o Decision Science uses interview techniques based on “wisdom of crowds”, essentially “bookmaker odds” for other
risks and uncertainties

» Bayesian assimilation engine is at the core
o Uses all experimental information, with optional simulation constraints
o MLDL surrogates for physics of diagnostics
o Estimates risks and uncertainties (covariance)
o Estimates value of information (sensitivities of outputs to inputs, cross variance)
» Focus on deficiency in model
o Largest uncertainty, probable bias, and significant distortion of PDF
o Monitor diagnostics
o Use of Mallat Scattering Transformation to keep “on manifold”, topological curvature
o Research on causal statistics (CMU)
» Python based, leveraging expertise of petroleum industry
o Researching fast surrogates for rad-MHD simulations (ASC funding of CMU)
o cGAN and MST (state and transition kernel)
» Recognize need for “data lake” in the cloud


https://tinyurl.com/DAAG19-MatrixDS
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5 | Status Quo and Future
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s I Realized petroleum and mining technology
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7 | Early, proof-of-concept for NGPPF

DEEP LEARNING OF PHYSICS CONSTRAINED DATA SCIENCE
PHYSICS

YiEses = 3.2 x 102 £+ 20%
Y2 =3.1x 102 +£10%

MST transformation that .
conserves physical . g
diffeomorphism & group '

symmetries
Sy (A X)

Bayesian
inversion

finite difference 531 ‘ I 3D Gorgon s o
solution mix % R

Fps =108+ 1.1 kJ
(P) =0.63 £ 0.17 Gbar

maéhme i, . experimental sensitivity

learning solution . .
o

TIPC
Kuramoto-Sivashinsky

equation
Pathak et al., PRL 120,

024102 (2018)

PHYSICS INFORMED
DECISION SCIENCE




Uses of value of information

» decisions, metrics for making the decisions

o diagnostics?

- what instruments? value of additional diagnostic value of experimental point
- design of instruments? Posterior pdf
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9 I A Bayesian calibration framework has been developed for interpreting DMP experiments

L experiments are designed to be accurately modeled through 1D MHD simulations
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10 ‘ Challenges unique to this calibration

How do you account for
correlation between number

of velocity points (times)?

Autocorrel%.j:ion time:

t=1+2 ) v(k)

profile:

Amount of information
contained in a given

n

T

How do you efficiently
sample the posteriors using
MCMC?

Solution: build a surrogate model
to emulate the hydrocode

1. Run ~100,000 simulations sampling the
parameter space to generate training data
* Massively parallel Monte Carlo |

2. Construct an emulator based on training data
* We Gaussian Process (GP) surrogate

3. MCMC on the GP to sample posteriors
« Usual metrics on chain mixing and
convergence

Brown et al., Journal of the Royal
Statistical Society Series C, 67, 4 (2018)



11 I Application focus

« Stagnation conditions for Magnetic Direct Drive Fusion experiments
» Analysis of pulsed power driven DMP experiments

o Analysis of MagLIF preheat experiments at NIF

» Z power flow data analysis

o Model calibration through focused physics experiments (plasma transport, non-linear instability
growth, etc.)



