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Abstract

The morphology of the stagnated plasma resulting from Magnetized Liner Inertial Fusion
(MagLIF) is measured by imaging the self-emission x-rays coming from the multi-keV plasma,
and the evolution of the imploding liner is measured by radiographs. Equivalent diagnostic
response can be derived from integrated rad-MHD simulations from programs such as Hydra
and Gorgon. There have been only limited quantitative ways to compare the image mor-
phology, that is the texture, of simulations and experiments. We have developed a metric of
image morphology based on the Mallat Scattering Transformation (MST), a transformation
that has proved to be effective at distinguishing textures, sounds, and written characters.
This metric has demonstrated excellent performance in classifying ensembles of synthetic
stagnation images. We use this metric to quantitatively compare simulations to experimen-
tal images, cross experimental images, and to estimate the parameters of the images with
uncertainty via a linear regression of the synthetic images to the parameters used to gen-
erate them. This coordinate space has proved very adept at doing a sophisticated relative
background subtraction in the MST space. This was needed to compare the experimental
self emission images to the rad-MHD simulation images.

We have also developed theory that connects the transformation to the causal dynamics of
physical systems. This has been done from the classical kinetic perspective and from the
field theory perspective, where the MST is the generalized Green’s function, or S-matrix of
the field theory in the scale basis. From both perspectives the first order MST is the current
state of the system, and the second order MST are the transition rates from one state to
another.

An efficient, GPU accelerated, Python implementation of the MST was developed. Future
applications are discussed.
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Summary

The morphology of the stagnated plasma resulting from Magnetized Liner Inertial Fu-
sion (MagLIF) is measured by imaging the self-emission x-rays coming from the multi-keV
plasma, and the evolution of the imploding liner is measured by radiographs. Equivalent
diagnostic response can be derived from integrated rad-MHD simulations from programs
such as Hydra and Gorgon. There have been only limited quantitative ways to compare the
image morphology, that is the texture, of simulations and experiments. We have developed
a metric of image morphology based on the Mallat Scattering Transformation (MST), a
transformation that has proved to be effective at distinguishing textures, sounds, and writ-
ten characters. This metric has demonstrated excellent performance in classifying ensembles
of synthetic stagnation images. We used this metric to quantitatively compare simulations
to experimental images, cross experimental images, and to estimate the parameters of the
images with uncertainty via a linear regression of the synthetic images to the parameters
used to generate them. This coordinate space has proved very adept at doing a sophisti-
cated relative background subtraction in the MST space. This was needed to compare the
experimental self emission images to the rad-MHD simulation images.

We have also developed theory that connects the transformation to the causal dynamics
of physical systems. This has been done from the classical kinetic perspective, where the
MST are expected values of the generalized Wigner-Weyl transformations of the density
operator. And, has been done from the field theory perspective, where the MST is the
generalized Green’s function, or S-matrix of the field theory in the scale basis. From the
classical perspective, the first order MST is the one particle distribution function, averaged
over the fast dynamical time scale, and the second order MST is simply related to the fully
nonlinear transition rate from one scale to another. The first gives the current state, and
the second gives the nonlinear evolution of the system. From the field theory perspective,
the first order MST is the classical action averaged over fluctuations as a function of the
inverse scale, and the second order MST is the scattering cross section from an initial to
a final scale. The first again gives the current state of the system, and the second gives
the inverse mass of the field boson that mediates the field interaction and scatters the field,
thereby evolving the field. What is required of the system is that it is causal. Equivalently,
a Lagrangian for the system can be written down, and therefore the system will be evolved
according to an action principle. This leads to a generalized advection by a Lie derivative,
in the classical case, and by dynamical paths weighted by the exponential of their actions,
in the field theory case.

Therefore, it is no surprise that the MST is a good metric for nonlinear systems. It
encodes both the initial state and the dynamics (transition rates) between states. This
explains why the first order MST, or the Fourier transformation, are not sufficient to uniquely
identify the systems. They only encode the the initial state. There are other technical details
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that cause problems with the Fourier Transform, unless there are rotational symmetries in
the physical system. It is also the reason a system that encodes finite information is fully
identified by the first and second order MST. This comes about because of a statistical
realizability theorem – either the distribution stops at second order or it must continue to
all orders. Since the information is finite, the distribution must stop at second order. One
can reason to this since knowing the S-matrix, that is the MST, is equivalent to knowing the
Lagrangian of the field theory.

What is even more important about the MST is the connection to the dynamical evolution
of the physics. If one includes the evolution coordinate, that is time, in the transformation,
the second order MST directly, and with no further transformation, gives the transition
kernel of the dynamics. This is independent of the current state, that is the first order MST.
Given an ensemble of example states that sufficiently sample the transition kernel, one has
fully characterized the physical system and should be able to evolve any state forward in
time, as given by the initial first order MST. That is the MST is the perfect coordinate
system in which to learn, identify, and propagate the dynamics.

The MST has been implemented in an efficient (GPU accelerated), yet flexible, Python
framework based on Keras/Tensorflow. This package includes 1D, 2D and 3D transforma-
tions along with visualization. It supports, through adjoints, the inversion of the transfor-
mation. The software is open source and distributed through PyPI as the BluSky project.

Future work that builds upon this fundamental work could include use of the MST as: (1)
a metric in the objective function of a Bayesian data assimilation, (2) a coordinate system
in which to numerically integrate physical dynamics, (3) a coordinate system in which to
machine learn how to numerically integrate physical dynamics, (4) a metric to identify phase
transitions, that is bifurcations, in the physical dynamics, and (5) a coordinate system in
which to build surrogate models.
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Chapter 1

Introduction

Magnetized Liner Inertial Fusion (MagLIF) is a magneto-inertial fusion concept currently
being explored at Sandia’s Z Pulsed Power Facility [1, 2, 3]. MagLIF establishes thermonu-
clear fusion conditions by driving mega-amps of current through a low-Z conducting liner.
The subsequent implosion of the liner containing a preheated and premagnetized fuel of
deuterium or deuterium-tritium compresses and heats the system, creating a plasma with
fusion relevant conditions.

Developing a detailed understanding of how experimental parameters such as premag-
netization, preheat, and liner design mitigate losses and control the ignition, as well as
evolution of the plasma, is a crucial and ongoing step towards realizing the full potential
of MagLIF. To this end, time resolved radiography of the imploding liner, as well as self
emission x-rays from the plasma at stagnation (where thermal pressure of the plasma stalls
the liner implosion) have been used to study the evolution of the plasma and its structure at
peak fusion conditions. For example, Ref. [2] observed an unexpected feature in radiographs
of a magnetized imploding liner – a double helical structure not observed in non-magnetized
liners. Additionally, bifurcated double helical strands have been observed in the stagnating
plasma columns captured by self emission x-ray image diagnostics.

The underlying physics linking the double helix structure of the imploding liner to the
bifurcated double-helices in the stagnated plasma is as of yet unknown. One working hypoth-
esis is that a helical magnetic Rayleigh-Taylor instability (MRT) [4] seeded on the outside
liner surface may grow large enough to feed-through the liner to seed perturbations on the
liner interior. It is thought that these interior perturbations may imprint the double helical
structure on the plasma. It has been experimentally demonstrated that the helical structure
is dependent on the aspect ratio of the liner (AR ≡ initial liner outer radius/initial liner wall
thickness) [5]. Recent experiments with varying liner thicknesses appear to demonstrate that
in the case of uncoated liners the stagnation column helical radius increases while helical
wavelength decreases with increasing AR, which is consistent with MRT feed-through from
from the outer liner surface [6]. There is another working hypothesis that this double helical
structure might be an emergent structure of the nonlinear evolution of the MRT that is
controlled by conserved magnetic and cross helicities that are injected into the liner. The
large scale self organization would be the result of a Talyor relaxation [7], that is an energy
minimization under the constraints of the topologically conserved helicities. However, such
inferences remain weak due to the fact that, to date, there has been no systematic way to
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quantitatively compare stagnation morphology experiment-to-experiment or experiment-to-
simulation while accounting for the uncertainty in characterizing features such as the helical
wavelength and radius.

In this work, we develop a method which enables such a comparison by applying a cutting
edge machine learning (ML) algorithm in image classification known as the Mallat Scatter-
ing Transform (MST) [8, 9]. Particularly, we are able to use the MST to aid in inferring
morphological features with uncertainty quantification. In Ch. 2, we motivate the use of
and supply the required theory for the MST. Chapter 3 describes the synthetic model used
to parametrize the double helix morphology. We then introduce a preliminary classification
model which demonstrates the ability of the MST to distinguish between different types of
helical images. We close Ch. 3 with details of the full machine learning pipeline used to
quantify the morphological parameters of the double helical images with uncertainty. Ch. 4
demonstrates the application of the method in quantitatively comparing simulation and ex-
periment, as well as a direct extraction of the morphological parameters with uncertainty
from experimental images. Particularly, we highlight the viability of the method to differ-
entiate between plasmas produced from different experimental designs. Chapter 5 develops
the theory that relates the MST to causal dynamics of physical systems – both classical and
field theoretical.
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Chapter 2

Mallat Scattering Transform

Recently, the use of deep learning methods, combined with availability of large labeled
data sets, has enabled a revolution in the field of image classification and analysis. Partic-
ularly, convolutional neural networks (CNNs) have gained widespread popularity for image
analysis problems, such as classification [10], segmentation [11], and even image genera-
tion [12]. The ubiquity of this approach is largely based on the ability of CNNs to learn
convolutional filters which compute features that are approximately invariant to irrelevant
symmetries present in the task (e.g. translation or rotational symmetries) [13].

However CNNs require significant expertise to navigate a seemingly arbitrary design
space (e.g. number of nodes and layers) and require considerable computing resources to
train, even when using transfer learning. Additionally, their black box nature make CNNs
a less attractive framework for scientific applications to bridge the gap between causation
and correlation. Alternative kernel classifiers such as the probabilistic neural network, are
based on the Euclidean distance between image features (e.g. pixel information), which is
easily broken by transformations, rotations and scaling. At the same time, familiar trans-
lation invariant feature representations such as the Fourier transform modulus are unstable
to deformations (that is not Lipschitz continuous). The wavelet transformation on the other
hand, is Lipschitz continuous to deformation, but is not translation invariant [9]. By com-
bining local translation invariance and Lipschitz continuity to deformations in a fixed weight
convolutional network, the MST addressed many of the concerns that arise in deep learn-
ing [8, 9].

MST consists of compositions of wavelet transformations coupled with modulus and
non-linear smoothing operators which form a deep convolutional network. Unlike deep con-
volutional neural networks, the filters in the MST are prescribed rather than learned. In
fact the deep convolutional network of the MST has been shown to outperform CNNs for
image classification tasks over a broad range of training sample sizes [9]. This is most sig-
nificant when the amount of training samples is considerably limited [9], which is often the
case with experimental data. Additional benefits of the MST framework over CNNs come
in the form of intelligible design – for example the depth of an MST network is bound by a
signal’s energy propagation through the network, whereas the depth of a CNN is seemingly
arbitrary.

The two-dimensional MST uses a set of convolutional filters which are calculated from a
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Mother Wavelet ψ by applying a rotation r and scaling by 2j:

ψλ = 2−2jψ(2−jr−ju), (2.1)

where λ = 2−jr and u is the spatial position. Let the wavelet transformation of image x(u)
be given by x ? ψλ. Given that the spatial resolution is retained in a wavelet transform, this
process can be iterated upon, such that the propagated signal along path p = (λ1, λ2, . . . , λm)
is given by:

U [p]x = U [λm] = · · ·U [λ2]U [λm]x

= |||x ? ψλ1| ? ψλ2 | · · · | ? ψλm| (2.2)

where the modulus removes the complex phase from the propagated signal. However, the
wavelet coefficients are not invariant to translation, but rather translation covariant. Intro-
ducing the Father Wavelet (i.e. a spatial window function) φ2J (u) = 2−2Jφ(2−Ju) allows an
average pooling operation to be performed by convolution U [p]x ? φ2J (u). This operation
collapses the spatial dependence of the wavelet coefficients while retaining the dominant am-
plitude U [p] at each scale. This results in an effective translation invariance assuming that
a given translation c is much smaller than the window scale 2J . The windowed scattering
transformation is thus given by:

S[p]x(u) = U [p]x ? φ2J (u)

= |||x ? ψλ1| ? ψλ2| · · · | ? ψλm| ? φ2J (u). (2.3)

Now, we may define and operator W̃ which acts upon the non-windowed scattering U [p]x
producing

W̃U [p]x = {S[p]x, U [p+ λ]x}λ∈P . (2.4)

W̃ will produce the output scattering coefficient at the current layer for the given path p,
and will move to the next layer along the path p + λ as demonstrated in Fig. 2.2. With
Eqns. 2.2 and 2.3, we arrive at a deep scattering convolutional network W̃ (Eq. 2.4) with m
layers. For 2-D signals (images), the MST coefficients are visualized via log polar plots as
depicted in Fig. 2.1.

In summary the MST forms a nonlinear mapping from an image’s spatial features to its
scale features. This mapping is Lipschitz continuous to deformation, meaning that small
deformations of the image result in small deformations of the Mallat scattering coefficients.
Since we will be concerned with discovering morphology parameters of stagnation column
images such as helical wavelength, MST provides a convenient basis as compared to, for
example, a Fourier transform which is not Lipschitz continuous to deformations. We refer
the reader to Refs. [8, 9] for more details regarding the mathematical properties of MST.
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Figure 2.1. Coefficients produced by applying MST to 2D
images in this work will be displayed on radial plots as shown.
Bins are created according to scale (radial positioning |λm|)
and rotation (theta position arg(λm)) with magnitude (color
scale, not shown) representing the size of the coefficient at
that scale and rotation.

17



Figure 2.2. The MST may be thought of as a convolu-
tional network with fixed weights. The above network could
represent for example a 1D MST with 3 scales, and no ro-
tations (1D case). The network outputs MST coefficients
averaged by a Father Wavelet along each path S[p]x. Each
node of the network is the set of scattering coefficients before
being window averaged by the Father Wavelet U [p]x. The
operator W̃ of Eq. 2.4 expands the network below a given
node at then end of a path p.
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Chapter 3

Synthetic Model and ML Pipeline

Synthetic Double Helix Model

In order to quantify the morphology of the MagLIF stagnation column, a model with
well defined parameters is needed to act as a surrogate for the x-ray self emission diagnostic
images. For this purpose we have constructed a synthetic model complete with 11 descriptive
model parameters that capture the 2D morphological projection of a fundamentally 3D
stagnating plasma along with 6 stochastic parameters to represent the natural experimental
variation and signal noise inherent in the x-ray diagnostics fielded on Z.

Analytically, the synthetic model consists of superimposed radial and axial Gaussians
over a pair of cos2 waves. The model may be specified by the composition of the following
functions:

s(z) = θ6 cos2(θ7 ∗ θ3 ∗ z + ζ5)

+ θ9 cos2(θ10 ∗ θ3 ∗ z + ζ6), (3.1)

r0,i(r, z) = (−1)1+δi,2θ8 + θ5 sin(θ3 ∗ z + ζ4 + δi,2θ11), (3.2)

gi(r, z, r0,i(r, z)) =
1√

2πθ1
exp

{−(r − r0,i(r, z))2

2θ21

}
, (3.3)

`(r, z) =
ζ3√
2πθ2

exp
{−z2

2θ22

}
, (3.4)

and

h(r, z) =
2∑
i=1

[
(1 + s(r, z))gi(r, z, r0,i(r, z))`(r, z)

× (1− ζ2U(0, 1)) + ζ1U(0, 1)
]
, (3.5)

where h(r, z) is the final composition used to generate double helix images, U(0, 1) is a
uniformly distributed random number on [0, 1], and (θi, ζi) will be described.
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The θi and ζi parameters are depicted in Fig. 3.1 and summarized in Table 3.1. Their
interpretations are: θ1 is the standard deviation of the radial Gaussian, θ2 is the standard
deviation of the axial Gaussian, θ3 is the Magneto Rayleigh-Taylor (MRT) wavenumber, θ4
is the order of the super Gaussian, θ5 is the helical strand radius, θ6 is the amplitude of the
large-wavelength axial bright spot, θ7 is the mode of the large-wavelength axial bright spot,
θ8 is the strand separation, θ9 is the amplitude of the small-wavelength axial bright spot,
θ10 is the mode of the small-wavelength axial bright spot and θ11 is the strand phase; ζ1 is
the background noise, ζ2 is the signal noise, ζ3 is the amplitude of the signal, ζ4 is the radial
perturbation phase shift, ζ5 is the is the phase shift of the large-wavelength axial bright spot
and ζ6 is the phase shift of the small-wavelength axial bright spot.

Our ultimate goal will be to create a machine learning pipeline which can take as input an
image of a plasma stagnation column and output a set {θi}11i=1 characterizing the morphology
of the column along with an estimate of the uncertainty in our output. This will be achieved
by creating a set of synthetic images from Eq. 3.5 using a large set of randomly chosen (θi, ζi),
computing the MST, and performing a regression from MST coefficients to θi. We reserve
the details of how error estimates are obtained for Ch. 3. Note the absence of ζi in our output
as those are meant to represent unimportant transformations, such as rotating the viewing
angle, which does not alter the fundamental morphology. Our pipeline is summarized in
Fig. 3.2. However, before considering the full regression problem, it is instructive to first
explore the ability of the MST to distinguish between double helix images with very different
appearance. To this end, we begin not with the full regression problem, but rather with a
classification problem in next section.

Classification Model

Studying the ability of the MST to distinguish between different classes of helical mor-
phology will provide reassurance that the regression problem is well-posed. Additionally, it
provides access to more easily interpretable results (e.g. classification accuracy as opposed
to R2). By considering the classification problem, we are also able to closely follow the ap-
proach using MST for MNIST handwritten digit recognition in Ref. [9]. Indeed, a majority
of the design decisions discussed below including image gridding, affine space dimensionality,
and scale resolution are inherited from Ref. [9].

We approach the problem by synthesizing 12 stagnation image classes – 11 distinct pa-
rameter constrained classes constructed from systematic modifications to the synthetic model
parameter distributions from a single base class. Each of the distinct parameter classes has
a definitive associated synthetic model parameter. For a given parameter class, the distri-
bution of its associated synthetic model parameter is translated some separation from its
corresponding base class distribution. This process is repeated for each of the 11 distinct
parameter classes (see Fig. 3.3). For the classification problem, we generate 340 images. We
use 50% of this data set as the training set to train an affine classifier, while the remaining
50% is separated out as the test set to be used for characterizing the trained classifier.
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Table 3.1. Synthetic model θi and stochastic ζi parameters
(see Fig. 3.1).

Model Parameters
θ1 = thickness
θ2 = length
θ3 = helical wavenumber
θ4 = order of axial super Gaussian
θ5 = amplitude of radial perturbations
θ6 = amplitude of large-wavelength axial brightness
perturbations
θ7 = mode number of large-wavelength axial brightness
perturbations
θ8 = strand separation
θ9 = amplitude of small-wavelength axial brightness
perturbations
θ10 = mode number of small-wavelength axial brightness
perturbations
θ11 = relative strand phase

Stochastic Parameters
ζ1 = background noise
ζ2 = signal noise
ζ3 = amplitude of signal
ζ4 = radial perturbation phase shift
ζ5 = large-wavelength axial brightness perturbations phase
shift
ζ6 = small-wavelength axial brightness perturbations
phase shift
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Figure 3.1. Synthetic Stagnation Model (see Table 3.1).

We now discuss how features were engineered from this dataset using the MST. First, the
reader may note from Eq. 2.3 that we must evaluate the scattering coefficients at points u in
our image. Now, due to the assumption that the statistics given by the MST are stationary,
that is spatially invariant, below the Father Wavelet window size; if we were to evaluate
S[p]x(u) at all points u, one would obtain very redundant information. As a result, it is wise
to subsample u. This is achieved by translating the spatial window by intervals of 2J such
that G# = N2−J , where N is the symmetric pixel count and G# is symmetric grid number.
This subsampling forces each image to be segmented into a G#×G#-grid [9]. We work with
images of pixel size 512×512, and set J = 7 giving G# = 4. We now have a design parameter
to choose, J , which determines the size of the sub-image, 2J × 2J , over which the transform
will be calculated. This was chosen based on the position, size and characteristics of our
double helix (see Fig. 3.4) and was found to give good classification accuracy as discussed
later. We note however, that a more rigorous procedure to select J would be to select the J
which gives maximum cross validated classification accuracy as in Ref. [9]. With this being
said, our eyes are very good at recognizing the dynamical space scale of the physics (see
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Figure 3.2. The MST regression pipeline for morphology
characterization of experimental stagnation images.

Ch. 5 for a detailed description of this scale). The size of the Father Wavelet, 2J , should be
of this scale. If the size is too small, the MST will be not be calculated over the largest area
possible and will therefore have more noise and not contain as much statistical information.
If the size is too large, the assumption of stationarity will be violated leading to a blurring of
the statistics and a resulting loss of information. It is therefore expected that there will be an
optimal size that could be determined by the aforementioned J cross validation optimization.

An added benefit to gridding the images, is data reduction via patch selection. From
Fig. 3.4(a) it is apparent that most of the image is background noise. This is echoed in the
MST coefficient space. Since our double helix is confined to column 2, essentially all of the
unique information is contained within the MST coefficients evaluated on the four patches
in column 2, so that the other columns may be dropped.

Before computing the MST on our gridded image, we must apply boundary conditions
for the convolution. There are many reasonable choices, such as periodic, zero-padded, and
mirrored. We chose to use a mirror boundary condition, but found very little impact to our
classification accuracy as compared to periodic.

The final step in engineering features for a classification algorithm is to perform an ap-
propriate scaling of the input features. This is a common practice in statistical learning, and
many different scaling transformations and dimensionality reduction methods are reasonable.
Here, we apply a log10 scaling to our scattering coefficients and model parameters (with the
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Figure 3.3. Classification Training Set construction. Pa-
rameter distributions are shown at left while the base classes
are represented on the right. Shown is a class separation as
the red line labeled “Sep”, and a class precision as the blue
line labeled “Prec”.

exception of θ11 which is a phase shift) used in training the classifier. This choice was made
to decrease the dynamic range of the MST coefficients, since before the transformation the
MST coefficients were dominated by only a few coefficients.

Finally, we may apply the classification algorithm. Following Ref. [9] we apply a classifier
based on an affine space model with the approximate affine space determined by principal
component analysis of each class. To be specific, let SXk denote the set of MST coefficients
for all of our images belonging to class k. SXk can be organized into a Ni,k×P matrix where
Ni,k is the number of images available for class k and P is the number of scattering coefficients
(i.e. the coefficients have been stacked into a vector of length P ). The columns of ∆k may
be transformed to have zero mean for each of the P coefficients ∆k = SXk − E(SXk). We
may then perform principal component analysis on ∆k by finding the eigenvectors {Uj,k}Pj=1
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Figure 3.4. Gridded MST: (a) image, (b) first and (c)
second order MST coefficients.

and corresponding eigenvalues {Λj}Pj=1 of the covariance matrix ∆T
k∆k. Taking Uj,k to be

ordered such that Λj > Λj+1, we keep only the first d � P principal vectors {Uj,k}dj=1.
Letting Vk = span({Uj,k}dj=1), we may construct the affine approximation space for class k

Ak = E(SXk) + Vk. (3.6)

Finally, for a new image with scattering coefficients Sx, the class assigned to the image is
given by

k̂(x) = argmin
k
||Sx− PAk

(Sx)||. (3.7)

In order to evaluate how effectively the classes are separated one may define the ratio of
the affine approximation error in a class i to the error in class j.

R2
ij =

E(||SXi − PAj
(SXi)||2)

E(||SXi − PAi
(SXi)||2)

. (3.8)

Note that if the classes are well separated, then R2
i,j will be very large for i 6= j, while

R2
i,i = 1. It thus makes sense to define the matrix

Ωi,j = Nje
−R2

ij , (3.9)

where Nj is a column-wise normalization ensuring that each column of Ω sums to 1. Fig. 3.5
shows the matrix Ω for our case demonstrating good class separation as indicated by the
fact that the matrix is strongly diagonal. The off-diagonal elements are indicative of overlap
among the the tails of the class distributions. The chance of miss-classification is extremely
small (< 0.1%), and the average class precision is 0.0016 while the average class separation

25



is 8.14. Here we have used the definitions of class separation and precision given in Ref. [9].
Note that the separation is just the average of the separation matrix given in Eq. 3.8. The
geometric meaning of the separation and precision are shown in Fig. 3.3.

Figure 3.5. The matrix Ω defined by Eq. 3.9 which
demonstrates that the constructed double helix classes are
well separated in the MST space.

Regression Model

We now consider the full regression problem as highlighted in Fig. 3.2. The early stages
of the pipeline are not significantly altered. For example, we still use log10 scaled MST coef-
ficients. However, rather than generating distinct classes, we generate images by selecting θi
values from a range which will contain all of the classes discussed in the classification prob-
lem. Specifically, image realizations are produced, using the synthetic model, from a random
sampling of the log-uniformly distributed model parameters. The statistical properties of
these distributions are determined by visually confirming that helices produced encompass
what is reasonable to expect from experiment. Additionally, most of the quantities we wish
to learn from the helical images (i.e. the θi’s) are non-negative. As a result, we chose to
log10 scale all of the θi values except for the strand phase θ11. The only other difference is the
replacement of the affine classifier with a linear regression method which we discuss below.

Before conducting a linear regression from (log10 scaled) MST coefficients to (scaled)
helical parameters, we standard normal scale θ and S. We will henceforth refer to the
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transformed quantities as θ̃ and S̃. We can then convert to a basis in which the cross-
covariance between the transformed scattering coefficients and model parameters from our
training set, CCOV(θ̃, S̃) = θ̃T S̃/(N − 1) is diagonal. Here, N is the number of training
samples used to construct the cross-covariance. To do this, we take the singular value
decomposition (SVD) of the cross-covariance. The SVD factors the cross-covariance matrix
into a set of transformation matrices U and V bound by a diagonal matrix Σ containing a
set of singular values

UΣVT =
θ̃T S̃

N − 1
. (3.10)

This set of transformation matrices provide a set of orthogonal bases vectors along which
θ̃ and S̃ are most strongly linearly correlated ordered from strongest to weakest correlation
(see Figure 3.6). The model parameters θ̃ and scattering coefficients S̃ are rotated into the
linearized space such that Y = θ̃U and X = S̃V define the linearized variables, respectively.

Regressing the linearized scattering coefficients X back onto the linearized Y is accom-
plished using multidimensional linear regression as shown in Eq. 3.11, where m is the map
from X to Y (e.g. ”slope”), b is the bias (e.g intercept) and ε is the error term

Yj = bj +

p∑
i=1

Ximij + εj. (3.11)

where ε = N (0,Λ) is assumed to be a zero mean normal random variable with covariance
matrix Λ. Writing Eq. 3.11 in matrix notation, the bias is absorbed into the slope such that
Y = XM + ε.

Note that Eq. 3.11 implies that the prediction for a new input X is Ypred = Y = XM
since ε = 0. Importantly, would also be able to characterize the uncertainty in our prediction
if we had an estimate of Λ. In order to estimate M and Λ, note that Eq. 3.11 specifies a
likelihood function

P ({Yi}|M,Λ, {Xi}) =
N∏
i=1

1√
(2π)k|Λ|

×e−
(Yi−XiM)T Λ−1(Yi−XiM)

2 ,

(3.12)

where the training data are assumed i.i.d. and k is the dimensionality of our output space
(here k = 11 since there are 11 theta parameters we wish to regress to). A maximum
likelihood estimate of the coefficients of the map matrix M and error covariance matrix
Λ are determined by finding their values which maximize the likelihood function over our
training data. Equivalently, since the logarithm is monotonic, we may maximize the log-
likelihood L. The solution is derived in many statistics and machine learning textbooks (see
e.g. Ref. [14]) and is given by

MMLE = (XTX)−1XTY, (3.13)
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which is the typical ordinary least squares solution where Xi(Yi) have been stacked to create
X(Y) and the error covariance matrix is

ΛMLE =
1

N

N∑
i=1

(Yi −XiMMLE)T (Yi −XiMMLE), (3.14)

which is just the estimate of the population covariance matrix of the difference (Y−Ypred).

Figure 3.6. Linearization of the model parameter-
scattering coefficient space. Orthogonal basis vectors, V
and U, mapping the model parameters (top panel, V) and
scattering coefficients (bottom panel, U) into the linearized
space. For the scattering coefficients, the first order is shown
in the top row and the second order in the bottom row.

For a new image, we can now estimate a set of values θ along with an estimate of the
uncertainty on theta according to the following algorithm:

1. Compute the first and second order scattering coefficients of the image on a 4x4 grid
(see Fig. 3.4).

2. Discard all but the second column from the grid for each of the 2 sets of coefficients.
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Figure 3.7. Here we visualize the MST regressor perfor-
mance. The scatter plots show predicted vs. actual principal
components. The first several demonstrate good agreement,
while the later components show worse agreement. This may
be indicative of nonlinearity which the linear regression can-
not explain, or it may be variance caused by the unexplained
ζ parameters. The correlation plot at right shows that pre-
dictions in the original parameter space are essentially uncor-
related.

3. Compute log10 of the scattering coefficients and flatten into a vector to get S.

4. Standard normal scale using the mean and standard deviation estimated on the training
set to get S̃.

5. Project onto principal components to get X = S̃V.

6. Compute Ypred = XMMLE.

7. Create a set of values consistent to within the error term

{Ypred,i}Nresamp

i=1 = Ypred + {Ni(0,ΛMLE)}Nresamp

i=1 .

8. Compute {θ̃i} = {Ypred,iU
−1}.

9. Compute {θi} by inverting standard normal scaling of θ̃ using the mean and stan-
dard deviations of θ̃ computed from the training set and then invert the log10 scaling
performed on all but the last component of θ.
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10. We now have an estimate of the distribution of θ consistent with the original image.
We may report the prediction and error as means and standard deviations, or as
percentiles (e.g. report the 50th percentile as the prediction and the 2.5-percentile and
97.5-percentile as lower and upper bounds).

In our case, inverting the transformations leads to an asymmetric distribution of θ values
consistent with the original image, so here we will report the 95% confidence interval and
the mode of the distribution rather than mean and standard deviation for any predictions.

Before moving on to discuss results, we note that the cross-covariance matrix computes
the linear correlation between the quantities θ̃ and S̃. As a result, any nonlinear relationships
between θ̃ and S̃ will not be recoverable upon linear regression. An exploration of the
possibility of a nonlinear regression between S and θ is reserved for future work. For now, we
focus on performance of the linear regression, as our results already indicate some ability to
distinguish morphology among different experimental configurations. In the next chapter we
discuss results and implications of the application of our methods to comparing morphology
of different stagnation columns.
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Chapter 4

Results and Discussion

There are two primary cases of interest for applying our method. The first is to be able to
quantitatively compare experimental data to simulation. The second is to be able to compare
morphology between different experiments. In doing so, we will be able to make statistically
sound inferences about discrepancies in morphology. By providing this capability, we hope
the method will provide physical insight into mechanisms causing unexpected discrepancies
in morphology in the two cases mentioned. To this end, we conduct some initial studies
which show how the method could be used in general.

Simulation-to-Experiment Comparison

Fig. 4.1 shows a comparison of simulated (with the program Gorgon) and experimental
data at several different liner aspect ratios. The MST coefficients, x, for the AR6 case are
shown in the left two columns of Fig. 4.3. One immediately notices the similarity of the MST
coefficients between the two cases. However, there is some nontrivial background present in
the experimental data, which our approach lends itself to projecting out. Specifically, if we
take the first principal component of the covariance between simulation and experiment, we
find the center column of Fig. 4.3 – the background, B. After projecting out this background
component from the experimental data (the right two columns of Fig. 4.3, x̃ ≡ x−〈x,B〉), we
can observe similarities and differences between the simulation and experimental morpholo-
gies by comparing the overall separation of the scattering coefficients, computed as pairwise
Euclidean distances, σi,j among the 3 cases. We can then visualize how well separated they
are by plotting

Ωi,j = Nje
−σ2

ij ,

which behaves similarly to Ωi,j defined in Eq. 3.9. This quantity is shown in Fig. 4.3 which
demonstrates that the 3D Gorgon simulations are generally close in MST space to the cor-
responding experiment, with the AR4.5 simulation showing some pairwise similarity to the
AR9 experiment.
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Figure 4.1. Experimental vs 3D Gorgon rad-MHD simu-
lated data for several different aspect ratios.

Experiment-to-Experiment Comparison

Finally, we finish with a discussion of differentiating morphology between experiments.
Fig. 4.4 shows the experimental plasma stagnation columns for two different liner designs
and their first and second order MST coefficients. To the left is experiment z3236 which
utilized a dielectric coated AR9 target, while to the right is experiment z3289 which had
an uncoated AR6 liner. There obvious differences between the MST coefficients for the two
cases; but what is different? To answer this question, we applied the regression derived in the
previous chapter. The results are shown in Fig. 4.5. The estimates of selected parameters of
the synthetic helical model, the θ’s, along with their uncertainties, are plotted for the two
cases side-by side. For parameters such as the radius of the helix and the wavelength of the
high frequency axial brightness perturbations; there is no difference. For other parameters
such as the strand thickness, and helical MRT wavelength; there are modest differences. For
yet other parameters such as the strand length, the amplitude of the low frequency axial
brightness perturbations, the wavelength of the low frequency axial brightness perturbations,
and the amplitude of the high frequency axial brightness perturbations; there are significant
differences.
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Figure 4.2. Background Subtraction. The top row are
the first order MST coefficients, and the second row are the
second order MST coefficients. The two columns on the left
are before the background is projected out, the center column
is the background derived from the first principal component
of the covariance between simulation and experiment, and
the right two columns are after the background is projected
out. This is for the AR6 case.
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Figure 4.3. Probability of Classification, Ωi,j : probability
of classifying Csim given that it is Cdata.

Figure 4.4. Comparison of two experiments using the
MST. To the left is shot z3236 with a coated AR9 liner. To
the right is shot z3289 with an uncoated AR6 liner. Shown,
for both cases, are the original stagnation image on the left
and the MST on the right (both first and second order coef-
ficients).
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Figure 4.5. Regressed parameters of the synthetic heli-
cal model for the two experiments shown in Fig. 4.4. The
values for shot z3236 are shown in blue on the left, and for
shot z3289 in green on the right. Plotted are modes with
error bars showing the 95% confidence interval. The error
bars are asymmetric because this is not in log space. The
parameters are (from left to right): strand thickness (mm),
strand length (mm), helical MRT wavelength (mm), radius of
the helix (mm), amplitude of the low frequency axial bright-
ness perturbations, wavelength of the low frequency axial
brightness perturbations, amplitude of the high frequency
axial brightness perturbations, and wavelength of the high
frequency axial brightness perturbations.
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Chapter 5

Physical Interpretation of MST

The MST was originally constructed to have the properties of both deformational conti-
nuity (Lipschitz continuity), as well as limited translational invariance (local stationarity).
This combined the best properties of both the wavelet transform and Fourier transform. It
was then found to be unitary (energy conserving), and a straightforward way was found
to build in any group symmetry. When it was used as a coordinate transformation, in the
context of modern data science, it was found to have excellent performance in classification
and regression of images and signals. The signals and images seemed to be sparse in this
basis. Little information, if any, was found in the coefficients of greater than second order,
but large additional value was found in the second order coefficients compared to the first
order coefficients. The question is why? This section explores two ways that the transfor-
mation can be directly related to the causal dynamics of physical systems. The first is from
a classical perspective, and the second is from a field theoretical perspective. In addition to
explaining the performance of the MST, this formalism will also allow direct interpretation
and use of the scattering coefficients. The conclusion will be that the first order scattering
coefficients give the current state of the system, and the second order coefficient give how
the system will evolve.

Classical: Manifold Safe Wigner-Weyl Transformation

We will start with the classical perspective of what the MST is. We first need to observe
that causal dynamics can be expressed in a Generalized Liouviille Equation using the notation
of coordinate free exterior calculus,

∂ρ(N)

∂t
+ Lu(N)ρ(N) = 0, (5.1)

where

ρ(n) ≡ fnτ
(n) (5.2)

is the n-particle distributions form, fn is the n-particle distribution function, L is the Lie
derivative,

τ (n) ≡
n∏
i=1

∧ωi, (5.3)
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ω = dλ is the non-degenerate two form that is exact on the cotangent bundle T ∗M , and the
vector field u(n) is defined by

iu(n) ω(n) = −dH(n), (5.4)

where

ω(n) ≡
n∑
i=1

ωi. (5.5)

This equation simply states the the N -particle distribution form, ρ(N), is advected (that is
deformed) by the vector field, u(N) on the manifold given by the cotangent bundle T ∗M (N).
See Fig. 5.1 for a pictorial representation of this general advection.

Integrating this equation over the first N -n particles gives the Generalized BBGKY
Hierarchy,

∂ρ(n)

∂t
+ Lu(n)ρ(n) = −n0

∫
T ∗M

L
u
(n)
int
ρ(n+1), (5.6)

where the interaction velocity of the first n particles with the n+1 particle is

u
(n)
int ≡

n∑
i=1

ui,n+1. (5.7)

This formalism is extremely general. The distribution, ρ, can be interpreted as a general
statistical distribution or the state of a quantum field theory. For specific forms of H,
the pull back of these equations can be shown to be: Liouville equation, BBGKY hierarchy,
Master equation, Vlasov equation, Boltzmann equation, multi fluid equations, Navier-Stokes
equations, MHD equations, heat diffusion equation, radiation transport equations, quantum
field equations, Schrodinger equation, Maxwell’s equations, Newton’s equations, etc. This
is why the Lipschitz continuity (that is continuity under diffeomorphism, deformation, or
advection) is such a key property of the MST.

Using the ideas of Bogoliubov, we now pull back the Generalized BBGKY Hierarchy,
Eq. 5.6, and reduce it to a Generalized Master Equation. We first pull back the equations
for the 1-particle distribution function, f1, and the 2-particle distribution function, f2 and
obtain

∂f1
∂t

+ {f1, H1} = −n0

∫
dp2 dq2 {f2, H12} (5.8)

and
∂f2
∂t

+ {f2, H1 +H2 +H12} = −n0

∫
dp3 dq3 {f3, H13 +H23}. (5.9)

The ideas of Bogoliubov are that f1 relaxes at the dynamic rate, Ω, to f̄1. This f̄1 evolves
at the collisional rate defined as

dΩ/dt

Ω
� Ω, (5.10)

which is much slower than the dynamic rate. The f2 relaxes at this collisional rate to f̄2.
This f̄2 then evolves at the correlation rate defined as

d2Ω/dt2

Ω2
� dΩ/dt

Ω
� Ω, (5.11)
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Figure 5.1. Advection of a generalized vector field on a
manifold.

which is much slower than the collision rate. We can now combine and reduce Eqns. 5.8 and
5.9 using this separation of scales to the Generalized Master Equation,

∂f̄1(p)

∂t
−∂f̄source(p)

∂t
v
∫
dp′ f̄2(p

′, p)−f̄2(p, p′) =

∫
dp′ f̄1(p

′) k(p′, p)−f̄1(p) k(p, p′), (5.12)

where the transition kernel is defined as

k(p, p′) ≡ f̄2(p, p
′)

f̄1(p)
, (5.13)

and we have added a source term, fsource. The right hand side of this equation has the simple
interpretation shown in Fig. 5.2. The change in the probability is the integral of stuff coming
into the state, p, from every state, p′, less the integral of the stuff going out of state, p, into
every state, p′. The state, p, can be the inverse scale, 1/λ, the canonical momentum, the
energy, the action, or the quantum numbers of the state. Note that the average distribution
function, f̄1 is considered constant over the dynamical scale in time and space. This sets the
scale for the local stationarity of the statistics, or the size of the neighborhood over which
one can take the MST, or equivalently the size of the Father Wavelet. This also highlights
the need for the local stationarity of the MST; this is in addition to the Lipschitz continuity
already discussed.

Let’s digress and discuss the importance of the Generalized Master Equation, as the fun-
damental equation of nonlinear dynamics and its relationship to emergent behavior and self
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Figure 5.2. Transitions of the Generalized Master Equa-
tion, Eq. 5.12.

.

organization. First of all one should recognize f̄1 as the fundamental distribution function
of the system. The Generalized Master Equation, Eq. 5.12, gives the evolution this funda-
mental distribution. Note that it can be written as an integrated difference between the f̄2’s.
Remember that f̄2 is the two-point correlation function.

The traditional way that the dynamics of Eq. 5.12 is analyzed is via a linear analysis.
The 1-particle distribution is linearized

f̄1(p, t) ≈ f0(p, t) + δf(p, t), (5.14)

where
δf/f0 � 1, (5.15)

along with Eq. 5.12 yielding a dispersion relation,

D(p, t) = 0. (5.16)

This dispersion relation can then be solved yielding the complex linear normal mode fre-
quencies, p0 = k+ iγ. This can be separated into the real oscillating frequency, 1/k, and the
imaginary stable or unstable growth rate, γ.

In contrast, as the system perturbation amplitude grows, it eventually enters the non-
linear regime where the linear assumption of Eq. 5.15 no longer applies. The system now
nonlinearly interacts, goes through a transient evolution and will approach a steady state,

fss(p) ≡ lim
t→∞

f̄1(p, t), (5.17)

which satifies the equation∫
dp′ fss(p) k(p, p′)− fss(p′) k(p′, p) v

∂fsource(p)

∂t
. (5.18)
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For most systems, such as 3D Navier-Stokes flow, the emergent behavior of the system
or equivalently the steady state distribution under goes a normal cascade (See Fig. 5.3.).
That is to say that for a system being pumped around a specific frequency, the energy is
transported from large to small scale in steady state and sets up the well known Kolmogorov
scaling. The energy is then dissipated at the small scale. (See Fig. 5.4.) This is an emergent
behavior with a very specific correlation structure. The steady state, fss(p), is encoded in
the transition rates, k(p, p′) = f̄2(p, p

′)/f̄1(p).

Figure 5.3. Time evolution of Kelvin-Helmholtz shear
instability of jet, as it undergoes a normal turbulent cascade.

.

Figure 5.4. Steady state spectrum of a normal cascade.

.

There is another class of systems that display a very different behavior. The simplest
example of such systems is 2D Navier-Stokes flow. (See Fig. 5.5.) Because the flow is
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constrained to 2D, the circulation can not un-twist. It would need to go into 3D to do that.
As a result,

total vorticity =

∫
∇× u d2x, (5.19)

is conserved. The system then goes to a steady state where the vorticity is conserved, but
the energy is minimized. This also will be encoded in the transition rates, k(p, p′). The
system will approach a large scale, emergent behavior, that is called self organization. The
energy cascades from small scale to large. This is called an inverse cascade. (See Fig. 5.6.)

Figure 5.5. Time evolution of 2D Navier-Stokes turbulence
as it undergoes an inverse cascade.

.

Figure 5.6. Steady state spectrum of an inverse cascade.

.

The most relevant case for MagLIF stagnation is 3D MHD evolution. This case also
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undergoes and inverse cascade. In this case, it is because of

total magnetic helicity =

∫
A ·B d3x, (5.20)

and

total cross helicity =

∫
v ·B d3x, (5.21)

conservation. Analogous to the 2D Navier-Stokes, the plasma evolves to a self organization
(DNA-like double helix, see Fig. 5.7) as it implodes.

Figure 5.7. Two stagnation, x-ray self emission, images
of a MagLIF stagnation.

.

Now, we will make the connection between the quantities that appear in the Generalized
Master Equation, f̄1(p) and f̄2(p, p

′), and the MST. Remember that f̄1 and f̄2 encode the
nonlinear steady state of the system, as well as the current state and its evolution. We start
by considering a piece of mathematics that dates to the early days of quantum mechanics in
1927 – the Wigner-Weyl transformation [15]. This transformation takes operators to/from
phase space, and faded into the recesses of history because of technical problems of mapping
from the manifold structure on which the operators live to the Rn topology of phase space.
The origin of this technical problem is its solution – a Modified Wigner-Weyl transformation
needs to be constructed that is manifold safe. Let us start by examining the structure of the
forward Wigner map

W̃ [Â] ≡
∫
ds ψ∗p(−s)

〈
q + s

∣∣∣Â∣∣∣ q − s〉ψp(s) = A(q, p), (5.22)

where a Fourier kernel is used,
ψp(s) = e−ip·s. (5.23)
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This is a bi-Fourier transform, since operators have both inputs and outputs, and both need
to be transformed. This transform also goes by the name of the bi-spectral transforma-
tion [16] in the modern machine learning literature. The problem with this un-modified
transformation is that the kernel has infinite support. Integrations that are done on man-
ifolds need to have a partition of unity, that is, patch functions. Transformation kernels
also need to have compact support. We therefore propose the following modification to the
Wigner-Weyl transformation. Use the Mother Wavelet, ψ(x), as the kernel, and the Father
Wavelet, φ(x), as the partition of unity. (See Fig. 5.8.) We can now take the modified
Wigner map of the density operator, which is called the Wigner function

W̃f (q, p) ≡ W̃ [ρ̂] = W̃ [ |f〉 〈f | ]. (5.24)

Using the definition of the Wigner map given in Eq. 5.22, we find that the Wigner function
equals

W̃f (q, p) = |f ? ψp|2, (5.25)

using the terminology of the MST. We can now compute f̄1 and f̄2 as

f̄1(p) ≡ E(W̃ [f̂ ]) = |f ? ψp| ? φ = S1[p]f (5.26)

and

f̄2(p, p
′) ≡ E(W̃ [f̂ f̂ ]) = ||f ? ψp| ? ψp′| ? φ = S2[p, p

′]f. (5.27)

The relationship is simple and profound. The first order MST, S1[p]f , is equal to, f̄1(p), the
state of the system. The second order MST, S2[p, p

′]f , is equal to f̄2(p, p
′), how the state

changes with time. Together they specify the nonlinear dynamics of the system and the
nonlinear steady state of the system.

Figure 5.8. Partition of Unity on the manifold of a torus,
T 2.

.
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Field Theoretical: S-matrix

The connection of the MST to the mathematical constructs of field theory is simple and
elegant. Many of the details of this calculation that examines the MST as a new perspective
on renormalization can be found in Ref. [17]. As with the classical analysis of the previous
section, we will find that the first order MST is related to the state of the system and the
second order MST is related to the transition rate between states. Let us start with the
Lagrangian perspective and define the generating function,

Z[J ] = N

∫
[df(p)] e(i/~)S0[f(p)]+(i/~)

∫
dp J(p) f(p), (5.28)

where S0[f(p)] is the action. The connection to the canonical formalism is through the
calculation of the Generalized Green’s functions or equivalently the m-particle scattering
cross sections (also known as the S-matrix, see Fig. 5.9). These are the functional Taylor
coefficients of the generating function. The S-matrix is

Sm(|f〉) ≡ E(Tp(f̂(p1) . . . f̂(pm))F (f)) = ||f?ψp1| · · ·?ψpm |?φ =
1

Z[J ]

δ

δJ(p1)
. . .

δ

δJ(pm)
Z[J ]

∣∣∣∣
J=0

,

(5.29)
where f is a field, F (f) is an ensemble of fields or the state of the system |f〉, Tp() is the
p-ordered product operator, and E() is the expected value operator. Already from this
expression the first order MST can be identified as the one particle S-matrix, and the second
order MST can be identified as the two particle S-matrix. As in the previous section on the
classical interpretation, Eq. 5.29 can be viewed as multiple field correlation functions.

This is still a bit abstract. Let us define the effective action through a Legendre trans-
formation,

S[ϕ(p)] = − lnZ[J ] +

∫
dp J(p)ϕ(p). (5.30)

Expanding in S and ϕ, it can be shown that

S1(|f〉) = |f ? ψp| ? φ = E(f̂(p)F (f)) =
1

Z[J ]

δZ[J ]

δJ(p)

∣∣∣∣
J=0

= ϕ0(p) (5.31)

and

S2(|f〉) = ||f ?ψp|?ψp′|?φ = E(f̂(p) f̂(p′)F (f)) =
1

Z[J ]

δ2Z[J ]

δJ(p)δJ(p′)

∣∣∣∣
J=0

=
1

m(p, p′)
, (5.32)

where ϕ0(p) is the classical action averaged over fluctuations as a function of the inverse
renormalization scale, p, and m(p, p′) is the renormalization mass as a function of the initial
and final inverse renormalization scales, p and p′. This is shown by the Feynman diagram
(Fig. 5.10), where a field with action ϕ0(p) is scattered by a particle of mass m(p, p′) into a
field with action ϕ0(p).
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To summarize, the relationships of the classical and field theory interpretation of the
scattering cross sections are:

S1(p) = S1(|f〉) = |f ? ψp| ? φ = f̄1(p) = ϕ0(p) (5.33)

and
S2(p, p

′) = S2(|f〉) = ||f ? ψp| ? ψp′| ? φ = f̄2(p, p
′) = 1/m(p, p′). (5.34)

For both Eq. 5.33 and Eq. 5.34, the first term is a statement of the order of the MST, the
second indicates the order of the S-matrix, the third is a practical description of how it
is calculated, the fourth relates it to the dynamically and collisionally averaged statistical
distribution functions, and the last relates it to the field theory quantities. Remember that
the transition rate is k(p, p′) = f̄2(p, p

′)/f̄1(p).

Figure 5.9. S-matrix which is the scattering cross section
of n particles into m-n particles.

.

Figure 5.10. Feynman diagram showing the physical
significance of both ϕ0(p) = S1[p]f = f̄1(p) and 1/m(p, p′) =
S2[p, p

′]f = f̄2(p, p
′).

.
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Chapter 6

Conclusions

We have demonstrated a full machine learning pipeline which we have applied to char-
acterize the morphology of experimental and simulated MagLIF plasma stagnation images.
We demonstrated that the MST provides a convenient basis in which to project out discrep-
ancies between simulated and experimental images. Furthermore, our method demonstrates
that, when projected onto our double helix model, we are in some cases able to differentiate
the morphology of different experiments. Particularly, by providing a characterization of the
uncertainty in our predictions, we are able to conduct statistical hypothesis testing around
discrepancies in morphology in experiment-to-experiment and experiment-to-simulation set-
tings. At the very least we are able to interpret the images, as well as difference between
images, in terms of the parameters of the double helix model and the uncertainties in the
estimates of those parameters.

We have also developed theory that connects the transformation to the causal dynamics
of physical systems. This has been done from the classical kinetic perspective, where the
MST are expected values of the generalized Wigner-Weyl transformations of the density
operator. And, has been done from the field theory perspective, where the MST is the
generalized Green’s function, or S-matrix of the field theory in the scale basis. From the
classical perspective, the first order MST is the one particle distribution function, averaged
over the fast dynamical time scale, and the second order MST is simply related to the fully
nonlinear transition rate from one scale to another. The first gives the current state, and
the second gives the nonlinear evolution of the system. From the field theory perspective,
the first order MST is the classical action averaged over fluctuations as a function of the
inverse scale, and the second order MST is the scattering cross section from an initial to
a final scale. The first again gives the current state of the system, and the second gives
the inverse mass of the field boson that mediates the field interaction and scatters the field,
thereby evolving the field. What is required of the system is that it is causal. Equivalently,
a Lagrangian for the system can be written down, and therefore the system will be evolved
according to an action principle. This leads to a generalized advection by a Lie derivative,
in the classical case, and by dynamical paths weighted by the exponential of their actions,
in the field theory case.

Therefore, it is no surprise that the MST is a good metric for nonlinear systems. It
encodes both the initial state and the dynamics (transition rates) between states. This
explains why the first order MST, or the Fourier transformation, are not sufficient to uniquely
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identify the systems. They only encode the the initial state. There are other technical details
that cause problems with the Fourier Transform, unless there are rotational symmetries in
the physical system. It is also the reason a system that encodes finite information is fully
identified by the first and second order MST. This comes about because of a statistical
realizability theorem – either the distribution stops at second order or it must continue to
all orders. Since the information is finite, the distribution must stop at second order. One
can reason to this since knowing the S-matrix, that is the MST, is equivalent to knowing the
Lagrangian of the field theory.

What is even more important about the MST is the connection to the dynamical evolution
of the physics. If one includes the evolution coordinate, that is time, in the transformation,
the second order MST directly, and with no further transformation, gives the transition
kernel of the dynamics. This is independent of the current state, that is the first order MST.
Given an ensemble of example states that sufficiently sample the transition kernel, one has
fully characterized the physical system and should be able to evolve any state forward in
time, as given by the initial first order MST. That is the MST is the perfect coordinate
system in which to learn, identify, and propagate the dynamics.

The MST has been implemented in an efficient (GPU accelerated), yet flexible, Python
framework based on Keras/Tensorflow. This package includes 1D, 2D and 3D transforma-
tions along with visualization. It supports, through adjoints, the inversion of the transfor-
mation. The software is open source and distributed through PyPI as the BluSky project.
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Chapter 7

Future Research Directions

The research of this LDRD has developed both the mathematical formalism and efficient
Python classes that will be the foundation of significant future application. There are several
ways that the MST will be used. First, it will be used in the Bayesian Data Assimilation
Engine that is under development for the analysis of MagLIF and other related experiments
on the Z-Machine at Sandia. Specifically, much of the data that is generated by Z is in the
form of images and signals that have stochastic character that is not being quantitatively
included in the objective functions. The MST is a metric of this stochastic character that
will enable this to be a further constraint on the analysis, thereby improving what can be
estimated from the experiments.

Second, because of the relationships established by this research between the MST and
the evolution of causal physical systems, the MST could be used as a coordinate system to
numerically integrate physical dynamics. This could be using traditional techniques or by
using modern data science techniques, such as machine learning how to numerically inte-
grate physical dynamics in the MST representation. Given that there is emergent nonlinear
behavior presenting itself during implosions on Z, this connection also indicates that the
MST representation would be a good space in which to theoretically analyze the emergent
behavior and identify phase transitions, that is bifurcations, of the emergent behavior. Fi-
nally, there is great promise for using the MST as the coordinate system when fast surrogate
models are being built with modern data science techniques for forward models, such as our
rad-MHD simulations, that currently take days to weeks to generate one data point.

There are several improvements that can be made to the analysis done with the MST
over the course of the last three years. We note that our approach has made a number
of reasonable assumptions. For example, we assume a model which exhibits a significant
amount of symmetry that may not be realized in experiment. This may be lifted to an
extent by modifying the analytical model. However, even when experimental images show
strong asymmetry, the predicted morphology parameters demonstrate reasonable behavior.
We have also assumed a linear relationship between the MST coefficients and helical model
parameters. This assumption may be lifted by using a nonlinear regression method such as
a neural network. We have also not incorporated true 3D helical structure and correlation in
our analysis. We have worked with a 2D parameterization of the helical structure, not a 2D
projection of a 3D structure. Lifting some of these assumptions will likely reduce the uncer-
tainty in our parameter inferences, making the method even more useful in characterizing
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morphology differences. This could lead to physical insights regarding mechanisms creating
particular plasma configurations and to improvements in target design. Finally, there are still
many experimental images which are too noisy, or exhibit other artifacts which preclude our
ability to get reliable morphology estimates. We are currently exploring additional machine
learning methods, such as data augmentation, which may reduce the impact of experimental
noise on our morphology regression. We will continue to pursue these ideas and present them
in future work.
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