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Seismic reflection data is sensitive to the presence of hydrocarbons in many kinds of reservoir 
rocks, as well as the spatial distribution of acoustic properties in the subsurface. Assessment of the 
economic worth of reservoirs in the early stages of development - when seismic data are most 
pertinent - should seek to exploit this fact. The maximum information content from seismic data 
should therefore be sought using inversion methods that model fluid distributions as well as 
structural and petrophysical variability.  Such an inversion method will most naturally be model-
based, i.e. allowing a continuum of possible reservoir structures and fluid distributions, from which a 
forward model of the seismic acquisition process can be generated (i.e. synthetic seismic data).

Nonetheless, inversion of seismic data is well known to be highly non-unique in the absence of 
constraining information. Fortunately, most early-development situations have enough well data to 
allow the formulation of a probabilistic prior model for the variability of acoustic properties in the 
pertinent rock types, and also approximate structural information derived from seismic picks.

In a Bayesian formulation, such prior expressions for the rock acoustic properties and structural 
uncertainties can then be combined with likelihood functions, which express the probability of 
various reservoir models as a function of the proximity of synthetic seismic data to observed data. 
The product of the prior and likelihood then forms the posterior distribution, which is the natural 
object from which to draw economic inferences about the reservoir.

Such inferences are invariably computed from realisations drawn from the posterior distribution, 
which must be generated using Markov Chain Monte Carlo techniques for problems as complex as 
this. The novel and challenging feature of multi-fluid prior models is that the probability space is a 
mixture of integer variables (which types of fluid - and in which rocks?) and continuous ones (layer 
surfaces, porosities, velocities etc). Drawing realisations from these high-dimensional, multiple-
alternative models must be done carefully. Sampling from such models can be performed using both 
random-walk Metropolis algorithms and Metropolis-Hastings techniques.

The output of this stochastic inversion techniques are suites of realisations which identify the 
petrophysical properties (saturation, porosity, net-to-gross etc), structural properties (layer-thickness 
etc) and fluid types at each seismic trace location.  Economic measures of reserves in place are 
directly calculable from these quantities.

Summary

Seismic inversion for fluid detection, petrophysics, and stratigraphy using Bayesian models and 
Markov Chain Monte Carlo methods
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Reflection coefficients Synthetic seismic

m = {ttop, NG, φR, vp,R, vs,R, ρNR, vp,NR, vs,NR, ρb,vp,b,ρh,vp,h,Sh}
Model parameters per layer:

R = reservoir rocks

NR = impermeable rocks

b = brine
h = hydrocarbon

A) Construction of a prior model for the rock properties and horizons at a trace location

Figure 2 . Regional trends for velocities, porosity and density
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At each seismic trace location, the reservoir and adjacent layers are approximated as a local "layer-cake" 
model, comprising a set of rock layers (fig.1, part b). In general, each rock layer is a finely-laminated mixture 
of a reservoir rock (permeable) and non-reservoir rock (impermeable). As a simple example, pure shales or 
sands are endpoint instances of this mixture. Each facies used to construct the model will have available a 
set of regional trend curves (fig. 2), in which the variations of velocity (both p and s), porosity, and density 
with depth are modelled probabilistically. The net-to-gross (NG) of laminated layers is given a prior normal 
distribution based on regional observations or appropriately vague prior beliefs.

The permeable rocks in certain layers may have had their in-situ brine displaced by hydrocarbons. Possible 
hydrocarbons are oil, gas, or immobile "low-saturation gas", and appropriate prior probabilities of the 
occurrence of these phases in the permeable layers can be proposed, subject to various density-ordering 
criteria for the fluids (e.g. we may forbid brine above oil). The set of possible fluids in each layer may then be 
enumerated, yielding a set of prior models with associated prior probabilities. Fluid properties of the in-situ 
brines and possible hydrocarbons are modelled using regional data, allowing for possible uncertainties using 
normal approximations. Prior distributions for the layer times are developed from picked horizons on the 
seismic data sets (figure 3), with the priors for thin (barely resolvable) layers typically constructed using 
various extrapolation routines (e.g. kriging).  Layer-thicknesses in depth may also be constrained by well and 
kriging information: such constraints act on the layer-times bounding the layer and the effective p-wave 
velocity (computed as per section B). The full model prior is developed from these ingredients (fig. 1a).

Figure 2. Suite of prior mean layer-top times, and wavelet 
extracted from well tie(s)

Figure 1b. Local layer-cake  model Figure 1c. Reflectivities and synthetic seismic

Full suite of model parameters:

M = {m1,m2,m3,...}

Figure 1a. Assembly of model parameters

A Bayesian vignette:  treatment of information derived from seismic with multiple 
alternative models

If we have a probabilistic model Mk of the reservoir's structural, acoustic and petrophysical properties, 
whose uncertainty is specified by the prior distribution P(Mk), the posterior uncertainty in these 
parameters after taking into account the seismic data D is given by

                                                           Π(Mk) ~ L(Mk|D)P(Mk)

where L(Mk|D) is the likelihood of the model Mk, given the seismic data. About the simplest physically 
reasonable form this likelihood can take is a sum over stacks using the 1D convolutional model:

                                        L(Mk|D) = exp[-Σ
{stacks j}

(Sj(t)-wj(t)*Rj(t))
2/2σj

2]
where, for the jth stack, Sj(t) is the seismic data, Rj(t) is the reflectivity for the appropriate incidence 
angle, wj(t) is the wavelet, and σj

2 is the noise level. Here we have assumed Gaussian noise, but other 
forms are possible. This expression acts to force the synthetic seismic for all stacks to approximate the 
measured data D, within an acceptable error σj

2. The seismic error in the sum is acquired at 
approximately the Nyquist rate computed from the bandwidth.

Some prior models k may not produce good synthetics within the scope defined by the prior (e.g. if the 
model postulates gas in a certain layer, resulting in a large reflected amplitude, but this is not evident in 
the observed data). The Bayesian scheme  here will reduce the posterior probability of this model via 
the combined operation of the likelihood and prior distributions. 
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B) The forward seismic model

(1) Fluid mixtures. Permeable facies containing hydrocarbons of saturation Sh are modelled as filled with an 
effective fluid of bulk modulus Kfluid = (Sh/Kh + (1-Sh)/Kbrine)-1. This Reuss average is appropriate for fluids 
well-mixed at the finest scale, which is usually appropriate  for mixed phases in an exploration context.

(2) Fluid substitutions. The effective acoustic properties of permeable rocks filled with the effective fluid are 
computed from Gassman's relations. This implies low-frequency dispersion-free behaviour and isotropy of 
the rock matrix. Shear moduli are unchanged by fluid substitution. Densities are pore-volume weighted 
averages.

(3) Laminated rock-mixtures. Finely laminated mixtures of the fluid-substituted permeable rock with an 
impermeable facies (e.g. shaly sands) are modelled using Backus averages. The effective p-wave modulus 
(M=ρvp

2 ) is given by Meff = (NG/MR + (1-NG)/MNR)-1. A similar expression for the s-wave modulus applies. 

(4) Reflection coefficients. From the effective densities and velocities of the two layers forming an interface, 
the p-p reflection coefficient for incident waves of angle θ to the normal is given by the first-order expression 
(first-order contrasts in properties being consistent with the convolutional model):

Here the notation follows the pattern 〈ρ〉 = (ρ1+ρ2)/2,  ∆ρ=(ρ2−ρ1) etc. The influence of the shear velocity is clearly 
apparent only in the larger offset angle stacks (θ appreciable).

(5) Convolutions. Synthetic seismic data are formed by convolving the reflectivities with the appropriate 
wavelet for the stack (fig. 1c). The seismic error ("true - synthetic") is accumulated over a fixed time range 
which excludes the influence of reflections that may lie outside the scope of the model. This time range must 
be fixed for each trace to prevent biases stemming from variable degrees-of-freedom in the likelihood 
function.
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C ) Getting approximate posterior modes

For each possible fluid combination k, the posterior probability surface is a surface which may contain 
several local peaks, or modes (fig. 4). The most plausible of these are located by using standard (e.g. BFGS) 
minimisation algorithms starting from suitable initial points (e.g. the prior means). The complete set of modes 
is the union of all modes for each fluid combination.

  

Each mode has a local curvature, which is estimated by applying linearisation approximations to the 
likelihood functions at the mode, and updating the prior Gaussian distribution using standard expressions 
from inverse theory. If the prior distribution is P(M) = N(M

_
,C) and the likelihood L=exp(-(f(M)-S)2/σ2) is linearised 

at the point M0  with X = ∇ f(M0), the approximate posterior is P(M) = N(M̃,C̃) with

The approximate posterior covariance C̃  is crucial in the random walk Metropolis algorithm used to draw 
samples from the posterior distribution. 
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Figure  5. Synthetic seismic traces overlaid by the observed 
seismic trace at a particular location in the survey. Left: sample 
models drawn from the prior with brine filling a reservoir layer lower 
down in the model. Middle: the same, but with oil in the reservoir 
layer. Right: traces computed from models drawn from the 
posterior distribution, conditional on oil present in the reservoir 
layer.

Figure 4. Typical multimodality of 
posterior distribution associated with 
pinchouts. Mode location using 
Newton methods and quadratic 
programming may be required.

D) Sampling from the posterior distribution using a MCMC scheme

Drawing samples from the posterior distribution of the various models Mk can be performed using 
a Markov Chain Monte Carlo (MCMC) algorithm (see ref. 3). These algorithms are the only known 
methods available for high dimensional problems where the posterior distribution cannot be 
analytically derived. For problems comprising a suite of candidate models of varying dimension,  
the chain requires a proposal kernel which can produce both transitions between models and draw 
new candidates within the same model.

For the problem of drawing proposal candidates within the same model, the posterior surface will 
be near-quadratic within the region of interest. Consequently, some established results for drawing 
from Gaussian distributions using random-walk Metropolis-Hastings algorithms can be used.  New 
models M' are drawn by adding a jump ∆M from the current point, where the jump is drawn from a 
symmetric "hopping" distribution pH(∆M) centered at the current point. The new model, M'=M+∆M, 
is accepted with probability

Optimally efficient sampling from the posterior occurs when the "hopping" distribution pH(∆M) has a 
Gaussian form with covariance CH = (5.8/d)C̃    , (where d is the dimension of the model), hence the 
importance of establishing the shape of the local covariance via the linearisation assumption 
described in section C. Poor estimates of the local covariance result in slow mixing of the MCMC 
chain and inadequate sampling of the posterior. A typical sampling sequence is shown in fig. 6.

Jumps between models can be performed in a variety of ways, but must be performed with care so 
as to preserve the reversibility of the chain. The simplest algorithm takes advantage of the fact that 
the models are nested, and preserves as many parameters at their current values as possible 
when model jumping. For example, when jumping from model M to M', with d' > d, the non-nested 
parameters m in M' are drawn from a suitable distribution q(m) (say the prior), which will then enter 
the acceptance criterion as  
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Figure  6. Typical convergence of a within-model MCMC random-
walk Metropolis sampler for the entire model posterior probability. 
All models are initialised at the approximate maximum-likelihood 
point, hence the initial decay to equilibrium. Correlation lengths in 
these chains typically scale as 1/d (for a model with d dimensions) 
and optimal sampling efficiency for fully Gaussian models is known 
to be about 0.3/d.
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Figure  7. Inversion of a sand wedge in shales, illustrating loss of horizon-time certainty near pinchouts. Left: truth-case sand body in shale background. 
Middle: seismic formed from truth-case model. Right: sequence of samples (about 40 per trace) of layer times, grouped so as to illustrate uncertainty in time 
horizons. The uncertainty is constant when the horizons are resolvable, but degrades within tuning thickness. The prior horizon distributions are quite broad. 
The signal to noise ratio is about 4:1.

The software used to generate these inversions is part of a suite of 
open-source software projects being sponsored by BHP-Billiton, 
which includes some significant extensions to the well known 
Seismic Unix (SU) toolkit from the Colorado School of Mines. The 
inversion codes used here are developed in java, using high-
performance numerical libraries from CERN and other sources. 
Source code will duly be available on the CSIRO website (contact 
the author for details). 

E) Open-source software details.


