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ABSTRACT

We show how to invert seismic data for a permeable rock sorting parameter by coding
the floating grain model of DeMartini and Glinsky (2006) into the Bayesian seismic
inversion code Delivery (Gunning and Glinsky, 2004). The Bayesian prior embeds the
coupling between elastic properties, porosity, and the floating–grain sorting parameter.
The inversion uses likelihoods based on seismic amplitudes and a forward convolutional
model to generate a posterior distribution containing refined estimates of the floating
grain parameter and its uncertainty. The posterior distribution is computed using
Markov Chain Monte Carlo methods. The test cases we examine show that significant
information about both sorting characteristics and porosity is available from this inver-
sion, even in difficult cases where the contrasts with the bounding lithologies are not
strong, provided the signal to noise ratio of the data is favourable. This holds true even
in the more difficult test case we examine, where the laminated reservoir net–to–gross
is not significantly improved by the inversion process.

INTRODUCTION

Seismic data have long been highly valued as the most important information in delineat-
ing reservoir architecture and overall hydrocarbon–in–place in the oil exploration business.
This is especially the case in regions where ‘soft rock’ characteristics make the presence of
hydrocarbons visible in reflected amplitudes. If source–rock and charge interpretations are
favourable, an attractive hydrocarbon–volume estimate from seismic amplitudes makes a
compelling case for further appraisal work, such as drilling more appraisal wells.

But a commercial reservoir needs much more than favourable reserves – at the very least,
the lithologies present must have favourable permeabilities for a commercial development
to be viable. The value of seismic data in inferring permeability has been much more
questionable, however, since flow characteristics of rocks are usually weakly coupled to their
acoustic behaviour in well sorted rocks. The folk explanation of the poor coupling is that,
loosely speaking, permeabilities are controlled by grain size, whereas acoustic properties are
controlled by porosity, which is roughly independent of grain size for random packings of
uniform size grains.

Such at least is the received wisdom for common well sorted sedimentary rocks. For
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poorly sorted rocks, less confidence can be placed in this generic belief. If they are known
to be present, it is crucial to be able to distinguish their effects from that of clay, so a vital
piece of contextual knowledge is a credible depositional story for the distribution or absence
of clay, plus the spatial location of the poorer sorted rocks in the well data. It is also clear
that modelling of poorly sorted rocks must be well informed by thin–section analysis, or an
experimental equivalent. Once this context is established, the velocity relationships evident
in the wireline log–data analysis must be explained by a consistent model.

In most established exploration or production basins in the world, oil companies main-
tain a database of ‘loading trends’ (the mutual dependencies of elastic properties, density
and porosity on burial depth or effective stress) applicable to the reservoir rocks in the
region. These are usually the better quality or ‘clean’ reservoir rocks. Challenges arise
when new log or core data appears which deviates substantially from these trends. In the
simplest case, such deviations can be attributed to the presence of clay, either laminated
or dispersed, and the analysis can proceed with a conventional clay model. But there are
cases when anomalous velocity behaviour in the log and core measurements is not explicable
using conventional clay theories, and more complex effects due to poor sorting constitute
a better explanation of the data. Further, if the anomalous velocity measurements of this
kind are well correlated with permeability changes, a theory couched in terms of sorting
variations may well be more suitable than one based on clay.

As an example, if there is no evidence of dispersed clay, one can imagine poorly sorted
rocks in which fine small grains may simultaneously have the effect of constricting the
fluid flow, as well as increasing the density without providing compensatory load support,
which will correlate the seismic velocity with the permeability. Such a model is developed
in DeMartini and Glinsky (2006). We use this model as the basis of the inversion studies
presented in this paper.

Settling the issue of the appropriate rock physics model to describe the observed log
and core data is only the first problem. The second is the question of what may be sensibly
and defendably inferred from seismic amplitude data given the parameters of the regional
rock–physics model. This question of inferability must be settled by a careful model which
incorporates a reasonable level of uncertainty in all the other factors which affect seismic
amplitudes. Simple ‘maximum–likelihood’ inversion studies are only a part of the answer:
the uncertainty in the inversion is the more key ingredient. For example, in the absence of
interference or ‘tuning’ effects, migrated seismic amplitudes are sensitive to the velocities,
densities and fluid content of the rocks both above and below a lithological boundary. These
will vary with depth and effective stress. A key question is then the extent to which changes
in the sorting characteristics of the reservoir rock are masked by natural variations in the
other factors, the answer to which is crucial in interpreting seismic amplitudes.

To address these issues rigorously, we have coded the ‘floating grain’ model presented
in this paper into the Bayesian seismic inversion tool Delivery (Gunning and Glinsky, 2004;
Gunning, 2003) which properly accounts for all the requisite uncertainties in the rock physics
and stratigraphic geometry in realistic models. The suite of stochastic ‘posterior’ models
produced by Delivery then determines what degree of refined knowledge about the sorting
characteristics of the rock properties is available from seismic data.

For some geological environments, we believe that the presence of poorly sorted material,
which is strongly correlated with permeability in core tests, has a detectable influence on
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acoustic properties, and is thus inferable from seismic data. In this paper we present two
such forward modelling studies to validate this belief, one for the simplest ‘clean interface’
problem of a shale seal bounding the main reservoir sand, and the second problem is a
representative multi–layer inverse problem typical of the depositional architecture of the
prospect whose data set inspired this study.

The layout of this paper is as follows. The section Rock physics models summarises the
floating grain model and the methods used to estimate its regression parameters from the
data of interest. Details of how this is coerced into a form suitable for Delivery follow.
There are several implementation details relevant to the way in which Delivery treats the
prior which are important, but we defer these to Appendix B. In Numerical Examples we
illustrate the implications of this model for two inversion problems – the first (Example A:
A simple model system) being the simplest seal over reservoir toy problem, where we explore
the characteristics of the prior in some detail. In Example B: More complex model based on
field data, a much more fully fledged model incorporating a complex seal structure and two
reservoirs is developed. We summarise our findings in the Conclusions.

ROCK PHYSICS MODELS

We recount briefly the rock–physics model described in DeMartini and Glinsky (2006). It
assumes measurements apply in the Gassmann low–frequency limit, and that the reservoir
is a homogeneous isotropic medium. In general we distinguish between the fluid porosity φ
and structural porosity φs. If the grain density and bulk modulus are ρg andKg respectively,
then filling the pore space with a fluid or suspension with properties ρf ,Kf produces an
effective medium of density

ρ = ρg(1− φ) + ρfφ (1)

and compressional and shear velocities

v2p =
Kg

ρ

(

3(1− νm)

1 + νm
β +

(1− β)2

φs(Kg/Kf − 1) + 1− β

)

, (2)

v2s =
Kg

ρ

3(1− 2νm)

2(1 + νm)
β. (3)

Here the dimensionless matrix bulk modulus β = Km/Kg, and νm is the matrix Poisson’s
ratio. The dependence of the matrix β on (structural) porosity is taken to be that of a
conventional critical–porosity model (Mavko et al., 1998; Nur et al., 1991)

β(φs) = (1− φs/φc)
λ. (4)

where φc is a critical ‘suspension’ porosity, usually around 0.42, and λ a data–fitted constant.

For a poorly sorted collection of grains, the ‘finer’ grains are treated as a secondary
component, which contributes in two pieces: (i) some small volume fraction of fine grains
do not support the rock matrix and act like a pore-space fluid, while (ii) the remaining
fraction is bound or captured into the load–bearing frame as the rock is buried over time. If
the overall fraction of small grains introduced is f∗, and a fraction fc of these are ‘captured’,
then φflt ≡ (1 − fc)f∗ is the volume fraction of ‘floating’ grains. This floating fraction is
treated as an effective fluid and modelled via Gassman substitution, while the effect of the
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captured grains is absorbed by using the structural porosity φs = φ+ φflt in β, equation 4,
and the load–bearing or structural porosity appearing in the denominator of 2. The effect
of the bound grains on the matrix Poisson’s ratio can be shown to be weak, and is thus
neglected.

In DeMartini and Glinsky (2006), extended arguments are presented as to why treating
the second component as a significantly different mineral does not yield an adequate match
to the experimental data shown below. Core and thin–section analysis also precludes the
presence of dispersed or laminated clay. The data is then modelled using a ‘bi–modal’
(large, and small floating grains) mixture of a single mineral, which has the advantage that
the overall p−wave velocity simplifies to the expression

v2p =
Kg

ρg(1− φ) + ρfφ





3(1− νm)

1 + νm
β(φ+ φflt) +

(1− β(φ+ φflt))
2

φ(
Kg

Kf
− 1) + 1− β(φ+ φflt)



 . (5)

Arguments are also furnished to demonstrate that the vs vs vp regional trend does not
change to leading order under this model, a prediction which is corroborated by the data.

The actual {vp,i, φi} data from log measurements in the province of interest appears to
fall into distinct clusters. One cluster, associated with core data of decent permeability and
fairly monodisperse sands, is modelled as ‘clean’ rock, with no floating component (φflt = 0).
This data is used in a non–linear regression vi = vp(φi, φflt = 0, λ)+ εp,i for the exponent λ,
assuming generic values for quartz (Kg = 37Gpa, ρg = 2.65g/cm3), brine (ρf = 1.05g/cm3,
vp,f = 6.07km/s), a mid–porosity range typical clean sand Poisson’s ratio (νm = 0.15),

and a critical porosity φc = 0.42. The regressed fit of λ̂ = 1.724 is then used in a second
regression for φflt, using only the anomalous data, yielding φ̂flt = 0.039, which is a plausible
average value for the anomalous data. The data and fits are shown in Figure 1. Note that
the ‘anomalous’ data is probably a mixture of rocks with variable sorting characteristics,
ranging from nearly clean to perhaps φflt = 5%.

Since the floating fraction is an unobserved quantity for each measurement, an important
statistical question is how its distribution can be disentangled from the regression variance
εp. The underlying distribution of φflt is unknown, but is likely to contain clusters, often
coinciding with well–groups. We have chosen to fix the variance of εp to that of the regional
trend, which accounts for the dispersion in the velocities due to ‘conventional’ effects, and
attribute the remaining dispersion to the effect of φflt. A multi-cluster analysis (using a
modified form of MCLUST (Fraley and Raftery, 2003)) of the univariate distribution of the
residuals ξi = vp,i−vreg.trend(φi), with cluster 1 fixed to the regional error (mean 0, variance
var(ξ) = σ2vp,reg.) shows the most statistically significant clustering model is a two cluster
split. The data points grouped with the regional trend are shown circled in Figure 1.

Linearisation of the best fit velocity relation in φ, φflt about a suitable mean porosity φ̄
and φflt = 0 yields a straight line fit

vp = ap + bp(φflt + (1 + g)φ) + εp, (6)

where we have written the three required constants in this way for consistency with the no-
tation of DeMartini and Glinsky (2006). The (zero mean) error term is εp. The linearisation
is clearly reasonable for the data clusters of Figure 1.

In DeMartini and Glinsky (2006), the response to loading is captured using a standard
exponential regression model dependent on the effective stress σeff, with an additional term
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Figure 1: Density vs. vp data for ‘clean’ sands and anomalous sands, together with non–
linear regression best fits (λ = 1.724 and φflt = 0, 0.039 respectively). The straight line
‘regional trend’ is the average across a much larger data set for the region, with approximate
errors as shown.

describing the grain capturing effect:

φ = aφ + bφ(1− e−σeff/P0)− φflt
1− fc

+ εφ. (7)

This expression is a statement that the total space occupied by the pore fluid and the finer
grains is compressed under loading in a ‘conventional’ way, and amounts to a definition
of the capture fraction fc. Basin modelling provides estimates of the effective stress, and
the floating fraction estimates from the velocity regression on data clusters then provide a
way to estimate aφ and fc through fitting. When this process is performed on the data set
here, estimates of fc = 0.3522, aφ = 1.1, bφ = −0.8759, P0 = 800PSI and σεφ = 0.0024 are
produced.

Conversion to Delivery formats

The Delivery software has an established style of representing loading or compaction curves
where p-velocity is regressed directly against suitable loading terms (Gunning and Glinsky,
2004). The fully linear form of the prior and the assumption of Gaussian regression errors
also enables a multi–Gaussian prior to be formulated. The naturally ‘augmented’ version
of the Delivery regressions suitable for incorporating sorting effects is thus

vp = Avp +Bvpd+ CvpLFIV +Dvpφflt + ε′p (8)

φ = Aφ +Bφvp + Cφφflt + ε′φ, (9)

using the existing notation in Gunning and Glinsky (2004). The shear relation is unchanged.
The prior for each reservoir layer thus has the conditional form P (vs|vp)P (φ|vp, φflt)P (vp|d,LFIV, φflt),
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where the variance of each of these Gaussian components comes from the regression vari-
ance, e.g. var(ε′p) = σ2p. The effective–stress dependence can be effected by taking the
‘loading depth’ d ≡ (1− exp(−σeff/P0))) if required (we use the depth rock curves entry
in the xml file used by Delivery, to distinguish from model depth). The LFIV term is then
unnecessary, and is dropped by setting Cvp = 0. Approximate conversion to this Delivery
style of the coupled regressions can be obtained with the formulae of Appendix B.

NUMERICAL EXAMPLES

We present here two examples illustrating how the inversion works using a floating grain
model fitted to data from the province of interest. The first example is the standard test
problem of a single isolated reflector, and the second a more complex model based on the
full log data. The region of interest contains various lithologies, but the main cap rock
above the oil–bearing sand is a shale, so we are chiefly interested in the trend properties
of the pay sand and this overlying shale. The shale and sand trends are common to both
models, so we dispense with these first.

Rock trends for sands and shales

Shales

Standard shale trends for the area in question are, with z as depth below mudline:

vp = −5377.26 + 0.9457z ± 476 (ft/s) (10)

ρ = 0.5343v0.166p ± 0.029 (gm/cc) (11)

vs = −3373 + 0.8012vp ± 206 (ft/s). (12)

Sands

For the vp relation 5, the ‘clean trend’ applicable is obtained by a linearisation of the fit
line shown in Figure 1 (the nonlinear fit to the ‘clean rock’ data cluster), whose maximum–
likelihood fit has λ = 1.724 and material constants as per the accompanying description.
At the mean data porosity φ̄ = 0.24, the linearisation of equation 5 to the form 6 yields
constants ap = 18795.8, bp = −30970.6 and g = 0.0247936, with estimated error σp =
√

var(εp) = 750 ft/s.

The loading trend for the pay sands is established in DeMartini and Glinsky (2006) as

φ = 1.1− 0.8759Zeff − 1.5437φflt + εφ. (13)

with Zeff ≡ (1− e−σeff/800PSI) and error σφ =
√

var(εφ) = 0.0024. Since the shale trends are

against z, we have converted this stress regression 13 to a depth trend, since the loading
term Zeff is very nearly linear in depth over the depth range of interest. The equivalent pay
sand depth trend (c.f. equation 7) is

φ = 0.525566− 1.59914× 10−5z − 1.5437φflt + εφ. (14)
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The last regression coefficient (1.5437 = 1/(1 − fc)) corresponds to the capture fraction
fc = 0.3522. With the understanding that z now plays the role of Zeff, the conversion
formulae of Appendix B yields the Delivery style constants

Avp = 2115.21

Bvp = 0.507541

Dvp = 18025

Aφ = 0.592251

Bφ = −3.151× 10−5

Cφ = −0.97581 (15)

The shear trend for the data regressed directly to yield

vs = −3996 + 0.8940vp ± 226 (ft/s). (16)

We have used the clean–sand regional–trend error estimates σ ′
εφ

= 0.0093 and σ′εp ≈
344ft/s in the augmented model, corresponding to the ‘conventional effects’ assumption
described earlier.

Example A: A simple model system

The aim here is to determine whether the presence of floating grain material in the reservoir
rock is ascertainable from reflected amplitudes using the rock physics model and regional
regressions just derived. We begin with the simplest 2–layer shale/sand system, which is
free of the complication of interference or tuning effects.

The well logs used to construct the prior have some clean rocks (no floating grains) and
rocks with floating content of around 2–5%. To model the inferability of the float fraction,
we constructed synthetic seismic truth–case stacks for near and far stack angles of a few
degrees and about 30◦, using a truth case model with 5% float and NG = 1, and all other
parameters at the most likely values from the trends. The reservoir fluid is taken as brine
for this simple study. Figure 2 illustrates the system, with truth-case plus posterior near
and far synthetics from the posterior of case iii) we describe shortly.

For inversion, the prior on floating fraction is taken as N(0, 0.052), and we attempt to
compute the posterior floating fraction from three cases: i) net–to–gross (NG) fixed at 1,
near–stack only, ii) (NG ∼ N(1, 0.22), near–stack only, and iii) (NG ∼ N(1, 0.22), near and
far stacks.

For case i), Figures 3– 5 show 3 possible forms of the prior – varied for illustrative
purposes – on which we superpose the original log data, which illustrates how the floating
grain effect smears out the regional prior.
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Figure 2: Two–layer model system with truth case (thick red) seismic traces and synthetics
from the posterior (black) for the inversion case iii) described in the text. The absolute
noise level is set at 0.002 for both stacks.

Inversion Analysis of Posteriors

Fixed NG, single (near) stack

Figure 6 shows salient scatterplots of properties of the sand layer before and after inversion.
The peak–signal to noise ratio is set at about 6:1. This and subsequent figures use symbols
defined in Gunning and Glinsky (2004) as follows: i) R near and R far, defined as Rpp for
the near and far stack, from equation 22, ii) overall layer effective density ρeff and velocity
vp,eff, defined in equations 9 and 10. The inversion is clearly able to detect the presence of
floating grain material and refine the porosity estimates.

Free NG, single (near) stack

Figure 7 shows salient scatterplots of properties of the sand layer after inversion, where the
model has additional net–to–gross freedom in the prior NG ∼ N(1, 0.22). As shown inset
in Figure 7.D, the inversion produces virtually no posterior sharpening of the net-to-gross
distribution. Nevertheless, the floating grain fraction estimate is still noticeably improved.

Fixed NG, near+far stack

Inversion using shear data in principle may help narrow down floating grain porosities
better, as the shear carries additional information. The far stack for this test case is set
at about 30 degrees (c.f. a few degrees for the near) and the reflected amplitude is much
weaker (AVO effects). The noise level was set at the same value as for the far stack.

For this case, it turns out that relatively little improvement in the estimates of the
primary quantities φflt and porosity occurs. A significant sharpening in the shear velocities
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Figure 3: This and figs. 4 and 5 show three “pedagogic” priors for velocity vs porosity
in a pure sand layer. Clean well data points (circles) and float-polluted well data points
(squares) are plotted on all three graphs: dots (·) are draws from the model prior. (a) Prior
constructed with artificially narrow σφ = 0.002, showing how parameters arise from a clear
50:50 mixture of ‘clean–rock regression’ points and an elliptical smear from the effects of the
floating grains. The clean rock trend is obviously far too narrow to embrace the clean well
(+) measurements, but the ‘clean trend’ is clearly visible and centred. Recall the well data
is from a spread of depths, so it is not expected that the prior (applicable at the reservoir
depth only) covers all well data.

vs and especially the overall far–reflection coefficient R far does occur. But the coupling
of these quantities with the primary quantities of interest induced by the prior and likeli-
hood terms does not appear to be sufficient to significantly improve their estimates, in this
particular case.

In summary, the test case here appears to show that an inversion is capable of detecting
the presence or absence of floating grain material for the kinds of rocks studied at the
depths of interest, as well as ‘tune up’ the reservoir porosity estimate. The basic reflection
coefficients are relatively weak (|R| ∼ 0.03) for both near and far stacks at this depth, so
it is clear apriori that the problem will be difficult. In contrast to our usual experience of
Bayesian inversion with imaged seismic data, the updates to the sand/shale net–to–gross
are very weak, despite the encouraging results for floating–grain fraction. This phenomenon
is a particular conspiracy of the impedance trends for the rocks in question, so this asset
appears to be a particularly challenging example. Further challenges arise in the more
complex field example of the next section.
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Figure 4: Illustrative prior (b): prior drawn from clean rocks only (float–fraction φflt ∼
N(0, 0)), with broad porosity uncertainty σφ = 0.02. The tails of the distribution do not
contain the floating grain data comfortably. Clean well data points (circles), float-polluted
well data points (squares); dots (·) are draws from model prior.

Example B: More complex model based on field data

In this example, based on actual field data, the complicating effects of additional lithologies
and tuning considerations come into play. The oil reservoir system we model here features
‘upper’ and ‘lower’ pay sands which are capped by a complex draping structure including
thick, acoustically hard marls and thin, soft, silty layers. An overall simplified 6–layer
sequence for the system has been modelled as {(1) Marl, (2) silt-marl-stringer-complex, (3)
shale, (4) ‘upper’ sand, (5) shale, (6) ‘lower’ sand}, where the silt-marl-stringer-complex is
an upscaled (impermeable) layer absorbing some of the very thin structures in the cap. The
near offset reflectivity from the marl edge is sufficiently strong to dominate the reflection
from the ‘upper’ sand top, so much extra information comes from the interface with the
shale below, and an additional 30◦ stack whose p-wave reflectivity is more comparable to
the marl.

Figure 8 shows the upscaled layer structure superposed on the logs and shale plus sand
trends for the model. Note there are distinct trends for the marl and stringer complex.

The main pay sands are not very clean, and are estimated to have net–to–gross values
of around 65 ± 10%. Oil is proved in these reserves with saturations of around 60%. For
simplicity, we fix the oil probability (1) and saturation in these layers. The floating grain
fraction in the main reservoirs is given a prior of N(0.02, 0.032) (truncated at 0, naturally),
which gives a significant prior probability to the zero–float or clean–sand case. The ‘truth
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Figure 5: Illustrative prior (c): prior with σφ = 0.02 and float–fraction φflt distributed as
∼ N(0, 0.052). Only a few measurements appear to lie at the periphery of the distribution,
but the mixture character is not as clear to the eye as in Figure 3. Clean well data points
(circles), float-polluted well data points (squares); dots (·) are draws from model prior.

case’ corresponds to a float fraction of 3.5%.

Figure 9 shows some typical ‘spaghetti plots’ of the synthetic seismic from the posterior
plotted against the ‘truth case’ data, for both stacks. Typical realisations from prior and
posterior are also shown as ‘layer-cake’ images of layers against realisation number.

As might be expected, the inversion produces strong updates to parameters like the
layer times, impedances, effective layer velocity, and porosity. Some details are shown
in figures 10 and 11. A reasonable improvement in the float-fraction estimate occurs, in
particular the fact that the posterior significantly reduces the ‘zero float’ possibility. The
most likely prediction is correct at around 0.035. The net–to-gross estimates are barely
improved, mainly because the ‘upper’ sand offers a weak impedance contrast to its mixing
shale when floating grain material is present at around 3% (c.f. the trend curves). The
sensitivity to floating grain fraction is very much higher than that to NG, so the update
is stronger. Again, the far–stack data helps to refine the shear properties significantly, but
this does not couple back through the prior strongly enough to improve estimates of the
quantities of direct interest markedly. Though not shown, the far stack data also markedly
improves the vp statistics of the shale in layer 5, but not the adjoining reservoir sands.
Overall, however, the improvements over the prior are not strong in view of the aggressive
signal to noise ratio.

In conclusion, the more realistic toy problem here shows that detection of poorly sorted
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Figure 6: Scatterplots from prior distribution (top row) and posterior (bottom row) for 2–
layer model with sand below shale. (A,D) float fraction (φflt) vs sand porosity. A perceptible
narrowing around the true answer of φflt = 5% is visible: fewer clean sands are produced in
the posterior, and (B,E) the sand density vs sand velocity vp(sand) scatterplot narrows more
obviously. (C,F) The effective reflection coefficient Rnear vs layer–time t is clearly pinned
down sharply. As usual, these parameters are most heavily constrained.

material is possible with very favourable signal–to–noise ratios. Several asset–specific issues
make this more difficult than might at first be expected. The first is that the reflection at
the top of the ‘upper’ pay falls in the sidelobe of the very strong reflection from the overlying
marl layer, so tuning effects and uncertainties in the modelling of the cap rock package in
general limit what may be discerned about the underlying sand. Secondly, the particular
loading behaviour characteristic of the pay depth makes the shale impedance quite close to
that of the sand, so the overall strength of the main reservoir reflection is notably weaker
than other nearby events. In view of the difficulties, it is relatively consoling that positive
information about the floating grain contribution can be drawn when very little can be said
about the net–to–gross.

CONCLUSIONS

The quantitative floating–grain rock physics model presented in DeMartini and Glinsky
(2006) has been incorporated into the Bayesian seismic inversion program Delivery. De-
velopment of the trend models for use in Delivery requires careful log and core analysis
and some simple nonlinear regression studies. The simple synthetic inversion studies we
present are closely based on actual asset data, and show that genuinely improved estimates
of the floating–grain or sorting characteristics, plus the reservoir porosity, are possible if the
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Figure 7: Scatterplots from the posterior for the model with looser net–to–gross (NG)
distribution in prior. Inset (A) floating–grain fraction φflt vs sand porosity φ, (B) effective
density ρeff vs effective velocity (vp,eff). (C) Histogram of φflt from the prior and posterior.
(D) Scatterplot of NG vs φflt, with (inset) histograms of NG from the prior and posterior.
Again, no obvious strong correlation appears here, with the density strongest near the truth
case values (0.05, 1.0).

seismic data has sufficient signal to noise ratio. For this particular study, far–offset data
does not appear to provide markedly better updates of anything other than shear–related
quantities.

The asset in question has some particular challenges associated with a relatively weak
reservoir reflection coefficient and complex tuning interference from a hard marl above the
reservoir cap, so we regard it as a difficult test case. The inversion techniques for rock quality
now available via the floating grain model capability of Delivery can be expected to produce
markedly sharper posterior updates for data sets free of these particular conspiracies.
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Figure 8: Layer based model truth case properties for the test model: logs (red) and truth-
case mean properties (cyan) are shown, for density, p–wave velocity and normal impedance.
The succession of 6 layers is clearly evident. The shale trend is shown green, sand blue: the
deflections in the sand trend lines are due to the floating grain term, and these are shown
without fluid substitution. The streaks in the logs are due to small cemented sand units
which have no large scale effect on the seismic.
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Figure 11: Insets A,B,C,D: Scatterplots of selected property–pairs from the near–stack only
inversion. E,F,G,H: the same, using both stacks. A and B show clear tuning–ambiguity
effects in the delineation of layer 3 which are not resolved by the use of the near stack only:
an appreciable fraction of realisations permit pinchouts in the thin layer 3. The additional
stack resolves this ambiguity (E,F). Insets C and G show shear velocity (vs) pair-samples
of the layer 4 sand and layer 5 shale, showing how the far stack induces the expected shear
velocity correlation across layers. The extra constraint does not significantly reduce the
uncertainty in most of the histograms of Figure 10, however.
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APPENDIX A

CONVERSION OF REGRESSION FORMULAE

Conversion of the regression forms of equations 6 and 7 to that of 8–9 can be derived by
simple algebra and assumption of independence of errors. The result is

Avp = ap + bp(1 + g)aφ (A-1)

Bvp = bpbφ(1 + g) (A-2)

Dvp = bp(1−
1 + g

1− fc
) (A-3)

Aφ = − ap
bp(1 + g)

(A-4)

Bφ =
1

bp(1 + g)
(A-5)

Cφ = − 1

1 + g
(A-6)

σ′εp =
√

σ2εp + (bp(1 + g))2σ2εφ (A-7)

σ′εφ =
σεp

|bp(1 + g)| . (A-8)

APPENDIX B

DELIVERY IMPLEMENTATION DETAILS

The Delivery code works with two versions of the model vector m. The vector m has a fully
Gaussian prior, with no truncations or restrictions on values. The physical model vector
m′, which is used in the forward model and its associated likelihoods (seismic, isopachs)
is obtained by applying time orderings and truncations (e.g. of NG or saturations) to m,
i.e. m′ = f(m), where f() embeds these rules. The truncation effectively induces a prior
which, for simple properties like NG, is a mixture of a truncated Gaussian distribution and
delta functions at endpoints.

With the augmented models defined by equations 8 and 9, the linearity means the
prior is still Gaussian, but the truncation of φflt in m′ must be handled with care. The
extra coefficients Dvp , Cφ have the effect of placing the prior on inclined ellipsoids in e.g.
the {vp, φflt} plane, so pure truncation on φflt has the effect of smearing the tail of the
distribution onto the plane φflt = 0 in a direction off the principal axes. This is clearly a
undesirable way to handle the prior. Figure B-1 shows a scatter plot of points produced
from a prior constructed in this naive way, with the obvious artifacts. A more reasonable
way to handle the truncation is with the mappings (only for φflt < 0):

v′p = vp −Dvpφflt (B-1)

φ′ = φ+Bφ(v
′
p − vp)− Cφφflt (B-2)

v′s = vs +Bvs(v
′
p − vp) (B-3)

φ′flt = 0, (B-4)

which forces the remapping to occur along directions parallel to the principal axes.
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This mapping minimises the difference (m′−m)TC−1
P (m′−m), subject to the positivity

constraint, which seems a reasonable formulation. The prior will then be a mixture of ‘clean
rocks (φflt = 0)’ and ‘poorly sorted’ rocks distributed along the ellipsoid with φflt > 0
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Figure B-1: Left: pure truncation of φflt resulting in smearing of prior along φflt = 0
plane. The right figure illustrates the remappings of equations B-1–B-4 which seem more
reasonable.

Note that the actual Gassman fluid substitution calculation that occurs later in the
forward model uses only the pure fluids (oil, gas etc), as the Gassman–like effect of the
floating grain presence is implicitly accounted for by the floating–grain terms in the modified
regressions.
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