Delivery: an open-source Bayesian seismic inversion tool

James Gunning, CSIRO Petroleum Michael Glinsky, BHP Billiton

Application areas

- Development, appraisal and exploration situations
- Requisite information
 - Seismic
 - At least one relevant well
 - Regional rock physics (sonic logs etc)
 - Wavelet from well tie

Desired rock physics

- Effect of rock
 - Location (geometry). Lithology changes
 - Velocity, density, porosity uncertainty
 - Compaction + uplift
 - Fluid content
 - Type, saturations, densities
 - Mixing
 - Net-to-gross (NG) effects...

Trace-local Model

- Fundamental parameters
 - Layer times
 - Rock properties in each layer

Rock Physics (1)

- Each layer a blend of two rocks
- Model based on small number of rock types
- Compaction trends for each rock type

Estimates of net-to-gross NG for each layer

Rock Physics (2)

- Effective media models
 - Effective fluids from fine-scale mixing (saturation based Reuss average)
 - Effective permeable medium from Gassman substitution of effective-fluid into permeable rock
 - Effective acoustic medium from Backus averaging of permeable and non-permeable rock

Construction of prior model

- Rock+fluid properties from regional trends
- Net-to-Gross from logs, regional knowledge
- Layer times from approximate picks+uncertainties
- Time truncations allowed for pinchouts

Fluid Combinations

- Permeable rocks can have oil/gas/fizzgas/brine, with specified prior probability
- Density ordering of fluids in layers various combinations
- Fluid combinations enumerated (e.g. 4...)

```
1: B B B B
```

2: B O G G

3: B O O G

$$P(1) = 0.40$$

$$P(2) = 0.25$$

$$P(3) = 0.35$$

Likelihoods

- Seismic constraints (1D convolutional model).
 Multi-stack, AVO
- Isopach constraints (well ties)

Seismic Likelihood

■ 1D convolutional model, subsampled l₂

norm
$$\chi^2 = \sum_{t \text{ stacks}} (w R_{eff} - S)^2 / \sigma_s^2$$

- Wavelet w provided, plus noise level σ_s
- Stack parameters provided for Zoeppritz equations (AVO effects)
- Effective refl. coefficients R_{eff} from effective properties v_p , v_s , ρ .
- Multistack: product of likelihoods

Isopach constraints

■ Thickness from effective v_p, two-way time

$$\chi^2 = \sum (v_p \Delta t/2 - d)^2 / \sigma_d^2$$

Bayesian Posterior

- $\Pi(m_k | S) \sim P(m_k) L(m_k | S)$
 - kth fluid combination
- Π(m_k | S) is multimodal, high dimensional, non-Gaussian
- The "answer" is near the modes: most "inversion" programs give only the parameters at the (best?) mode
- Uncertainty of inversion determined by mode shape: must find all modes + quantify them
- Mode positions, covariances, heights found & collected using multidimensional optimisation methods
 - Quasi-Newton methods
 - Genetic algorithms

Sampling for the uncertainty

- Hybrid MCMC methods
 - Jumps within models
 - Jumping between models
- Acceptance probability (Metropolis Hastings)

```
\alpha = \min(1, \frac{\Pi(m_{new})P(m_{old}|m_{new})}{\Pi(m_{old})P(m_{new}|m_{old})})
```

Random Walk Samplers

Random walk within models

$$\alpha = \min(1, \frac{\Pi(m_{new})}{\Pi(m_{old})})$$

Model jumping between models

Random Walk samplers (2)

- Advantages
 - High acceptance rates (~0.25)
 - Simple to code & get right
- Caveats
 - Long correlation lengths (~3d)
 - Decimation usually applied
 - Occasional slow tunneling effects

Independence Samplers

- Build mixed-Gaussian approximation to Π(m | S):
 - $P(m_{new} | m_{old}) = P_{approx}(m_{new})$
- Advantages
 - Very efficient if Π(m|S) close to Gaussian
- Disadvantages
 - Can lock up if posterior is wierdly shaped

```
\alpha = \min(1, \frac{\Pi(m_{new})P(m_{old}|m_{new})}{\Pi(m_{old})P(m_{new}|m_{old})})
```


Outputs

- Stochastic samples in SU format
 - All layer properties
 - Useful commercial quantities
 - Net sand, net hydrocarbon, thickness...
 - Fluid content
 - Effective acoustic properties
 - Diagnostics

Ensemble analysis

- deliveryAnalyser: separate analysis module ("small is beautiful")
 - Quantity statistics
 - Histograms
 - Synthetic seismics
 - Diagnostics
- Interfaces nicely with
 - INT viewer
 - SU, BHP_SU

Example (1) Sand wedge

Example (2) Net-to-gross wedge

Example (3) Current BHP project

Net sand and P(oil) maps

Realisations at a trace

black trace = seismic data, red trace = synthetic seismic P50 model

Fluid probability and spaghetti plots

Prediction confirmed by well

The software

- 100% Java (platform independent)
- Uses high-quality public domain numerical libraries
- Public domain (open source), à la Linux, GNU...
 - improvements returned to maintainers
- Interfaces with INT viewer
 - servlet-applet, multi-tier structure
 - Java, XML saveset of view
 - Multidimentional 2D viewer, 3D in future
- General XML editor for parameters and distribution
 - Behavoir determined by xsd
 - Servlet-applet infrastructure

XML parameter & script editor

Under development

- Bayesian wavelet extraction modules
 - Multi-stack
 - Deviated wells
- 4D seismic inversion tools
 - Multiple survey, multiple stack seismic inversion
 - Coupled with reservoir dynamics using experimental design proxies (Chris White, LSU)

Where to get it

- www.petroleum.csiro.au
 - ? Open source projects
- Complete preprint (Computers & Geosciences)
- Source code (available early July)
 - Send email to <u>james.gunning@csiro.au</u> to be informed when it is available