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CSEM inverse problems are plagued by issued related to poor scaling and strong nonlinearity. Poor 
scaling results from the absorption of signal energy in shallow rocks, and nonlinearity is a result of a 
large dynamic range of electrical resistivities in the subsurface; e.g., a factor of 104 from seawater to 
some basalts. 
 Poor scaling means the inverse problems must be stabilized. Our preferred methods are 
Bayesian prior distributions on rock resistivities assembled from regional rock physics. Prior beliefs 
for a volume of rock (e.g. layer) used in the model should be a mixture distribution driven by 
depositional knowledge, rock and fluid classes, and scaling effects. Vertical correlations between 
layers with unknown “correlation lengths” in the prior can be used to derive smooth inverted models 
using Empirical Bayes methods. This provides a more satisfactory method of estimating smooth 
models than the “discrepancy principle” used in non-Bayesian methods. In this framework, 
smoothing parameters are naturally estimated at the maximum aposteriori (MAP) point of an joint 
model for rock-properties, correlation lengths, and possibly effective-noise parameters. 
 An alternative route to “simple” low resolution models is performing model-selection over a 
family of increasing resolution, unsmoothed models, using model-choice criteria such as the 
marginal model likelihood or “evidence”. Our implementation is a splitting method, which is  effective 
at placing model resolution where it is statistically justified, typically producing O(10) layers for 1D 
CSEM data.
 Nonlinearity means that inversions built without artificial smoothing are nearly always 
non-unique, especially for models below natural resolution. Point estimates of models are not 
adequate for decision making. Strict Bayesians regard the full posterior distribution as the important 
quantity: in this case, the posterior is a multimodal “mixture” distribution, and planning decisions 
based on CSEM data must take this into account. Enumeration of the multiple modes is necessary. 
Sampling from the posterior is difficult using Markov Chain Monte Carlo (MCMC) on account of the 
poor scaling, strong correlations, and nonlinearity. Some approximate sampling using the parametric 
bootstrap is possible.
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Priors

Based on regional geological knowledge, the marginal 

prior distributions for layer resistivity will be a mixture of 
components with weights based on prior-probabilities of 
types and fluids, suitably smeared from upscaling 
effects to reflect internal heterogeneity. We approximate 
this using a truncated log-normal: see Fig. 2.
 For a model with “vertical correlation”, we can 
use, e.g. the hierarchical truncated Gaussian

where Cp,ij( )= p
2
e

- |i-j|, H the Heaviside function, and 
1/  is a correlation length.

                                                            

Bayesian formulations for a layer based 1D 

model (Fig. 1) 

Likelihoods

Noise in CSEM is a complex mixture of instrumental, 
external and modelling noise. Tractable models are 
needed to make progress. We expect careful 
preprocessing, to enable Gaussian noise models to be 
used. For data d and a noise estimate in Cd  

Here F(m) is the forward modelled response. The 
variance parameter n is added to absorb noise-level 
mis-estimates.

Fig 2. Marginal prior resistivity distribution

Optimisation framework for maximum aposteriori (MAP) models

MAP models are obtained by local minimization (over m, n, of the -ve log posterior 
probability:

  
     

 

The noise level n and (possible) correlation are determined by competition between the 
terms shown. Balances between the noise level and the smoothing/correlation  make good 
sense: as the noise level rises, the inferable resolution 1/ broadens2. 
  Optimal regularisation or smoothing can thus be obtained by standard maximum 
aposterior/likelihood type inference: note the objective has a term favouring “simplicity”. For 
comparison, the usual “discrepancy principle” approach1 uses Cp( )-1 T +diag(W

2
) (with 

a finite-difference derivative ; there is no explicit term favouring simplicity, and we lose control 
over the prior marginals:

 

Conclusions

 
Resolution in CSEM problems can be inferred by either hierarchical models with 

meta-parameters expressing spatial correlation, or by model-selection over families of 

models with variable spatial discretization. In both cases, the “Occamist” virtue of 

parsimony is quantified, and leads naturally to models of maximum statistical significance, 

and thus reliability in prediction and inference.

favours “rougher” models (large ) favours smooth models (small )

favours large noise favours small noise
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Resolution via splitting and model-selection methods

Resolution can be inferred by performing model selection over a suite of models of 
variable spatial discretization. We need an efficient algorithm for visiting/generating 
models, and a measure of model “probability”, or statistical significance. We use the 
marginal model likelihood (MML), or “evidence”, obtained by integrating the posterior 
probability over all the free parameters:

The well-known Bayes information criterion (an exp(-nplog(nd)/2) “penalty” term in (k)) is 
a further approximation of the Laplace approximation.
 Based on partitions of an  underlying lattice, the set of all possible models can be 
enormous. We explore a limited subset based on greedy recursive algorithm. One 
simple possibility, depicted below, is 1) Start with a 2-layer parent,  2) split each layer in 
the parent, invert for the MAP model, record the MML, 3) embed the best split, make the 
new model the parent, and recurse. Many variations are possible, but even this simple 
choice is fairly successful: see the figure below.
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Projected-Newton bound-constraint methods for minimising a function f(m)

 Noise can drive MAP type estimates towards unphysically low resistivities. Efficient 
bound-constraint methods are needed. We use an active set method, and projected line-search 
or trust-region searches towards the Gauss-Newton point. 
 The projection operator P “snaps” a point to within the feasible region: e.g. 
P(mi)=max(mi,mLBi), if mi has lower bound mLBi. At stage k, the bound on mi is termed “active” if 
mi-mLB,i < k and f/ mi > 0. The active set A is the set of active indices.
 Newton steps are always of form mk+1=mk - H

-1.∇f. Active set methods separate out the 
inactive part: we set Hij= ij, i A, with ∇fi mi-mLB,i. A backtracking ( line search towards 
P(mk+ mk+1) then follows. Rapid convergence should ultimately emerge in the subspace of 
inactive constraints. The very poor scaling of CSEM problems make the implementation of this 
tricky.  Linear-like convergence can appear for some time as the current point squeezes down 
narrow valleys, even for unbounded problems.

Fig 1. Modelling setup
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a bit like:  ∂T∂+diag(W
2
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Fig 3. Backtracking Projected Newton method, just before onset of active constraint 
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CSEM is inherently a low resolution technique. Models are often built below natural resolution, 
which rapidly increases the degeneracy and multimodal character of the solution space. The 
likelihood then is not focussed, but becomes a curving, “walnut”-like null space. Typically, Gaussian 
priors do not focus the posterior density at compact modes. A set of local modes is usually 
produced, with weak barriers separating the modes. “Geodesic”-like connections between modes 
are not usually straight lines in resistivity space.
 The contorted shape of the posterior distribuition make uncertainty estimates difficult. Local 
covariance matrices estimated from the Hessian at particular modes are typically useless, except for 
very coarse models. Markov Chain Monte Carlo techniques are normally the tool of choice for 
Bayesian studies, where the posterior distribution is sampled by a random walk that “diffuses” over 
the support of the distribution. For problems with very strong correlations, component-wise sampling 
methods like the Gibbs sampler are impractical. Transformation to independent coordinates is also 
not practical, since the posterior is highly curved. Bootstrapping techniques, which allow the use of 
optimization to generate samples, have proved useful for this problem.

Uncertainty evaluation
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Multimodality. Mapping the interconnections of modes

Globalised mode enumerations strategies like least-squares with randomized starts and layer flipped 
starts reveal a variety of local optima. The interconnectedness between modes is interesting from the 
point of view of model uncertainty and possible sampling algorithms. How are modes connected? One 
possible approach is to minimise the line integral of the -log(posterior) between two modes A and B:

Minimum connecting paths should look like Fig 1 below. To find this path, a simple way is to discretize 
the integral using N intermediate points, add pieces to keep the segments about equal length, and 
minimize the sum-approximation. Computational kernels for the gradients at each segment node are 
simple to construct once gradients for the CSEM problem are available. Our discrete approximation is

Posterior uncertainty sampling (Figs 4,5,6)

The Bayesian posterior for CSEM problems ought ideally to be sampled using some efficient 
MCMC method. The tight, correlated, and twisting posterior presents serious challenges to all 
standard methods. No simple, constant variable transformation neutralises the correlations. Strong 
correlations make component-wise samplers such as Gibbs or single-variable slice samplers 
extremely inefficient.  Scaled Metropolis-Hastings samplers cannot adapt their scale to the twisting 
valleys without breaking reversibility. 
 An approximate way of sampling from the posterior is the parametric bootstrap, which is 
rigorous for a fully linear model, and asymptotic in large n for non-linear problems that are not 
ill-posed.  Since this is a “frequentist” technique, the Bayesian prior has to be recast to look like 
“effective data”, which is trivial3. We call this the Bayesian parametric bootstrap. 
 The method is roughly this. A MAP model is inverted for, using the true data and prior. 
Resampled data and resampled priors are then generated, and for each set, globalised inversions 
are run and the MAP model inverted from these is treated as a “posterior sample”. The ability to 
use optimization in each bootstrap sample is a critical advantage over MCMC: the sampling is 
slower, but widely dispersed, converged, and independent. Fig. 4 is a cartoon explanation of how 
the Bayesian parametric bootstrap works, and Figs 5,6 show an example.

Fig 1. Typical conjectured “saddle-like” links between modes A and B 
in a CSEM problem. The “maximum probability interconnecting path is 
disctretized with N intermediate points, whose positions form a 
tractable optimization problem.

−2E−1 2E−1 6E−1 1E0 1.4E0
−2E−1

0E0

2E−1

4E−1

6E−1

8E−1

1E0

1.2E0

1.4E0 m_5_vs_m_4

−2E−1 2E−1 6E−1 1E0 1.4E0
−2E−1

0E0

2E−1

4E−1

6E−1

8E−1

1E0

1.2E0

1.4E0 m_6_vs_m_4

−2E−1 2E−1 6E−1 1E0 1.4E0
−2E−1

0E0

2E−1

4E−1

6E−1

8E−1

1E0

1.2E0

1.4E0 m_6_vs_m_5

−2E−1 2E−1 6E−1 1E0 1.4E0
−2E−1

0E0

2E−1

4E−1

6E−1

8E−1

1E0

1.2E0

1.4E0 m_12_vs_m_4

−2E−1 2E−1 6E−1 1E0 1.4E0
−2E−1

0E0

2E−1

4E−1

6E−1

8E−1

1E0

1.2E0

1.4E0 m_12_vs_m_5

−2E−1 2E−1 6E−1 1E0 1.4E0
−2E−1

0E0

2E−1

4E−1

6E−1

8E−1

1E0

1.2E0

1.4E0

m_12_vs_m_6

−2E−1 2E−1 6E−1 1E0 1.4E0
−2E−1

0E0

2E−1

4E−1

6E−1

8E−1

1E0

1.2E0

1.4E0 m_13_vs_m_4

−2E−1 2E−1 6E−1 1E0 1.4E0
−2E−1

0E0

2E−1

4E−1

6E−1

8E−1

1E0

1.2E0

1.4E0 m_13_vs_m_5

−2E−1 2E−1 6E−1 1E0 1.4E0
−2E−1

0E0

2E−1

4E−1

6E−1

8E−1

1E0

1.2E0

1.4E0 m_13_vs_m_6

−2E−1 2E−1 6E−1 1E0 1.4E0
−2E−1

0E0

2E−1

4E−1

6E−1

8E−1

1E0

1.2E0

1.4E0 m_13_vs_m_12

−2E−1 2E−1 6E−1 1E0 1.4E0
−2E−1

0E0

2E−1

4E−1

6E−1

8E−1

1E0

1.2E0

1.4E0 m_14_vs_m_4

−2E−1 2E−1 6E−1 1E0 1.4E0
−2E−1

0E0

2E−1

4E−1

6E−1

8E−1

1E0

1.2E0

1.4E0 m_14_vs_m_5

−2E−1 2E−1 6E−1 1E0 1.4E0
−2E−1

0E0

2E−1

4E−1

6E−1

8E−1

1E0

1.2E0

1.4E0 m_14_vs_m_6

−2E−1 2E−1 6E−1 1E0 1.4E0
−2E−1

0E0

2E−1

4E−1

6E−1

8E−1

1E0

1.2E0

1.4E0 m_14_vs_m_12

−2E−1 2E−1 6E−1 1E0 1.4E0
−2E−1

0E0

2E−1

4E−1

6E−1

8E−1

1E0

1.2E0

1.4E0 m_14_vs_m_13

0 5 10 15 20 25 30 35
60

70

80

90

100

node indx (i=0...31)

−l
og

(P
os

te
rio

r)

m2

m
3 evolution evolution

0.5 1.0 1.5 2.0 2.5
0.5

1.0

1.5

2.0

2.5

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

6000

7000Fig 2. Evolution of 
mode-connection paths under 
BFGS for standard 
“split-canonical” model (deliberate 
split of reservoir layer into two 
underresolved 50m units). Left: 
log10(resistivity) of each reservoir 
layer. Right: 2 misfit function 
along saddle-link trajectory as 
optimization evolves. In practice, 
initial trajectories linear in 
resistivity space will be used.

Fig 3. Typical mode-connection paths for a pair of modes in an 18-layer problem on a logarithmic 
grid. The inset depicts the model resistivity, “morphing” from mode A to mode B, lighter=resistive. 
For the 6 layers picked out in red, the scatterplot above shows the trajectory as a slice of the 18 
parameter space. The exchange of resistivity near some possible reservoir target is obvious from 
the inset.

Fig 4. Example of the -log(posterior) function 
(roughly, 2/2) plotted over the set of all 
saddle-paths connecting each pair of modes, for 
an unsmoothed problem with 8 modes. Each 
saddle path has relatively low probability 
barriers, so we should expect samples from the 
posterior to see most of these modes.
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Fig. 4. Cartoon explanation 
of Bayesian parametric 
bootstrap. Posterior density 
(C) constructed from (B) prior 
and (A) likelihood for typical 
underresolved CSEM 
problem. Inset D shows the 
typical machinery of the 
parametric “Bayesian” 
bootstrap: 1) resampling the  
data “jitters” the null space 
(the red line along the valley) 
2) resampling the prior 
“illuminates” different zones 
of the null space, and local 
optimization produces 
samples from the center of 
the “illuminated zone”.

Fig. 6 Left: parametric bootstrap posterior samples as a scatterplot, on selected layers 
from the inversion model. Multimodality and clustering is clearly apparent. Right: 
posterior samples generated by the bootstrap procedure, with lighter shades more 
resistive. Samples are strongly independent, and layer-exchanging of resistive material is 
evident.

Fig. 5 Inline CMP electric field data 
used for the parametric bootstrap 
study shown in Fig 6. The inversion 
study uses an 18 layer logarithmic 
grid
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Conclusions 

The uncertainty in CSEM inversion needs to take into account multimodality as well as 
uncertainty within modes. Diverse multiple modes can be found using standard non-linear 
least squares techniques, with starting points either randomized or constructed from layer 
flipping. Sampling the rigorous Bayesian posterior using MCMC is a difficult problem, but 
approximate sampling using the parametric bootstrap with globalised inversion is effec-
tive. The approximate samples are widely dispersed and independent. The posterior 
resistivity distribution for target layers is critical in decision making.
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