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ABSTRACT

The understanding of vapor bubble generation in an aqueous tissue near a fiber tip has
reqmred advanced two dimensional (2D) hydrodynamic simulations. For 1D spherical bubble
expansion a simplified and useful Rayleigh-type model .can be applied. For 2D bubble
evolution, such a model does not exist. The present work proposes a Rayleigh-type model for
2D bubble expansion that is faster and simpler than the 2D hydrodynamic simulations. The
model is based on a flow potential representation of the hydrodynamic motion controlled by a
Laplace equation and a moving boundary condition. We show that the 1D Rayleigh equation is
a specific case of our model. The Laplace equation is solved for each time step by a finite
element solver using a trianguiation of the outside bubble region by a fast unstructured mesh
generator. Two problems of vapor bubbles generated by short-pulse lasers near a fiber tip are
considered: (a) the outside region has no boundaries except the fiber, (b) the fiber and the
bubble are confined in a long channel, which simulates a fiber in a vessel wall. Our simulations
for problems of type (a) include features of bubble evolution as seen in experiments, including a
collapse away from the fiber tip. A different behavior was obtained for problems of type (b)
when the channe! boundary is close to the fiber. In this case the bubble’s expansion and
collapse are both extremely slow in the direction normal to this boundary and distortion of the
bubble is observed.

Keywords: vapor bubble, Rayleigh model, hydrodynamics, potential flow, finite element

1. INTRODUCTION

In many medical therapies short laser puises are delivered to aqueous tissues through fibers,
generating vapor bubbles near the fiber tip.' The bubble evolution requires two dimensional
(213) hydrodynamic simulations and therefore special computational capablhtxes In 1D bubble
evolution a simplified treatment exists, based on an extended Rayleigh model>* This equation
is an ordinary differential equation and can be easily solved. For 2D bubble evolution such a
treatment does not exist. In the present paper we derive a 2D Rayleigh type model which can be
used in many medical applications. This method is much faster and simpler than the 2D
hydrodynamic simulations.

Our model is based on applying a flow potential ¢ related to the fluid velocity outside the
bubble i = -V¢, where ¢ is a solution of a Laplace equation.” We assume as in the Rayleigh

model that the inside of the bubble is uniform in pressure and density and derive a moving
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boundary condition for ¢ at the bubble boundary. For the limiting 1D case our model gives the
known 1D Rayleigh model. For the general case we solve a cylindrical Laplace equation with
Dirichlet (¢ =0 ) and Neumann (normal component ( V@ ), =0 ) boundary conditions based on
the bubble boundary motion. For every time step an Unstructured Mesh Finite Element Solver
(UMFES) is used to update the triangulation of the region outside the bubble. ®’

Two cases are solved. In case (a) a fiber deposits instantaneously a short laser puise in an
aqueous system with a free boundary. We obtain solutions, which include the experimental
characteristics of the expansion and the collapse of the bubble away from the fiber. In case (b)
we consider a fiber and a bubble confined in a channel. This case includes characteristics of a
fiber in a vessel. The presence of the channel reduces the fluid flow normal to the channel and
causes a distortion in the bubble evolution and especially in the bubble collapse.

The plan of the paper is as follows: Section 2 discusses the physical model. Section 3
presents the numerical procedure. Computational results and discussion are given in Section 4
and concluding remarks are presented in Section 5.

2. THE PHYSICAL MODEL

We consider a vapor bubble generated in an agueous system by a short-pulse laser near a
fiber tip. The bubble evolution requires 2D simulation.>® We assume that the bubble is uniform
in pressure as in a Rayleigh bubble and that it evolves adiabatically with entropy So. Applying
the bubble equation of state (EOS), any one of the quantities P (pressure) o (density), T
(temperature), or £ (energy) together with §, determine the others. For the region outside the

bubble the relevant hydrodynamic equations are the continuity equation,

9’:—)+V-(pﬁ)mo (1)
ot
and the momentum equation for the fluid velocity u,
il +i Vi = _Yr . (2)
ot o .

Outside the bubble we assume a flow potential ¢ such that ii = -V¢ and consequently obtain
from Eq.(2) after integrating from r to oo,

—%4»1(%))2 = k(oo )—I(F) @A)
dar 2

where dh=dp/p and
Y/
h(oo)=h(7 )= [<£ : 4)
P

where A( 7 }is the enthalpy at 7 and /(=) is the ambient enthalpy at large r.
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For many cases p = constant we may replace in Eq(4) hfe)-h(7) by {p_ - p(?))/ £ and
get

dp_p-pe. u’ (s)
dt p 2 ’

d _d . . - . . .
where E—m—éw-l—u -V, pis the pressure at rand p_is the ambient pressure. By enforcing
t t

Eq.(5) at the bubble’s boundary, we get
T Eee T , (6)

i.e. a relation between the pressure P, velocity U and the flow potential @ at the boundary.
Equation (6) is the boundary condition for the bubble expansion. The velocity U varies along
the bubble boundary and so does @ by Eq.(6).

Applying Eq.(1) for p =constant and using i =~V¢, we obtain a Laplace equation for
the region outside the bubble,

Vig =0 (7)

The solution of equation (7) with the moving boundary condition, Eq.(6), present the main
ingredients of our 2D time dependent bubble model.

We can show that Eqs.(6) and (7) are consistent with the 1D Rayleigh equation. For the
1D case the Laplace equation solution is ¢ =C/r. Using u=-d¢ /dr, we get ¢ =RU /r.
Inserting ¢ in Eq.(5) and taking the boundary limit r=R we get,

RR+3U*=L(P-p_) , @)

which is the 11> Rayleigh equation. *

By assuming that p = constant we ignore the acoustic emission term. Its effect will be
studied in future work. The acoustic emission can be approximated for a laser depositing its
energy close to the fiber tip. The acoustic wave is emitted on a short time scale relative to the
bubble expansion. The acoustic wave velocity for a uniform laser deposition is
u, =(P-p_)Apc,) and its energy is e, = LApu.° /2, where cg1$ the adiabatic sound
speed, L and A are the laser deposition length and area, respectively. This acoustic energy can
be subtracted from the bubble initial energy thus taking into account acoustic emission. At the
final collapse stage of the bubble in a 2D case, most of the energy is dissipated and the bubble
rebound is usually small.

In the following we assume that the boundary pressure, P, is the pressure P, inside the
bubble. In future work several effects as surface tension, viscosity, acoustic emission, and
material strength and failure, should be included in determining the boundary pressure.”’




3. THE NUMERICAL PROCEDURE

At the initial time 7, =0 we set the flow potential @, = 0 and the velocity U, =0 at the
bubble’s boundary. The initial density inside the bubble is taken as p, =/g/cm’ and the

instantaneous laser energy deposition determines its initial temperature 7, pressure F, and the

constant entropy of the bubble §) . We use $, to obtain the adiabat of the gas inside the bubble
in a table of pressure as a function of density. An equation of state (EOS) of water is used based
on NBS Steam Tables.'” Throughout the calculations we used the Unstructured Mesh Finite
Element Solver (UMFES) which is a general finite element solver for 2D elliptic partial
differential equations (as the Laplace equation} over an arbitrary bounded domain, with
Dirichlet (¢ =0 ), Neumann (( V¢ ), =0) or mixed boundary conditions.®” The density of the
generated mesh is usually user-supplied, based on the nature of the given problem.

Atthe n" time step we perform the following:

Step 1: The conditions on the bubble’s boundary for the potential flow are first updated by
using Eq.(6),

2
@rr = ¢nw’ + Atn—-} |:—{- (Rr—-} - pw )_ gﬂ:i} ? (9)
P 2

where P is the bubble pressure, p the liquid density, and @,_,, U __, are the flow potential

n—i

and the velocity at the bubble’s boundary during the (n—1)" time step.

Step 2: We solve Laplace equation for ¢, outside the region using UMFES. We then update the

velocities U, at the bubble’s boundary using the Laplace solution and the relation,

U,=-Vg, . (10)
where the flow potentials and the velocities are calculated at the finite element mesh points.

Step 3: Update the bubble’s new boundary using the velocities calculated in Step 2 and the time
interval Ar,,.

Step 4: Update the bubble density p, by calculating the bubble’s volume V, and using the
relation,

pnvn:pOVG v (11)

The adiabat is used to calculate the new bubble pressure P, . For the next step we use p,,, F,
and Ijn in Eq.(9).

In the numerical procedure we assume a vanishing flux on the surface of the fiber, i.e.
uy, =(Vg), =0, where N stands for the normal component. On the other walls we assume
Dirichlet boundary conditions, i.e. ¢ =0 provided they are far enough from the bubble.
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4. RESULTS AND DISCUSSION

Throughout this work we assume a fiber radius r, = I00um and a homogeneous laser

absorption length of a=7um . A typical triangulation that depends inversely on the distance

from the fiber tip is shown in Fig.(1). We concentrated on two problems of different types: (a) a
free boundary problem and (b) a bubble confined in a channel.

4.1 Case (a): A bubble expanding in a free boundary region.

In this case the boundaries of the region outside the fiber are far from the bubble. The
boundary conditions upon them can be taken either as ¢ =0 or (V¢ ), =0, with similar results.
The initial bubble is the rectangle 0<z<7um.0<r<100um (see Fig.(1)). Although the
boundary in Fig.(1) is shown at 300 um , we used 1000 gm in each direction for the following

calculations.
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Figure 1: The initial bubble close to z=0 and its outside region for a free boundary problem with
a triangulation depending inversely on the distance from the fiber tip.

Once the system absorbs the laser energy, the bubble expands until the ambient pressure
on its boundary causes it to come to rest. Then the collapse phase starts and the bubble’s
boundary moves in opposite direction. A typical expansion-collapse process is given in Fig.(2).

In this case we assume p, =10 bar,T, =350"C, where T, is the initial temperature of the
bubble after the laser energy deposition. The bubble maximum expansion is at about 9 #s and
its maximum radii are about 250 um to the right direction (+z) and 200 um to the left (-z) and
in the radial (r) directions relative to the fiber tip corner ( z,r )=(0,100). The expansion and

collapse to the left and radial directions occur approximately at the same time, while that to the
right direction lasts longer. This causes that the bubble collapses away from the fiber [see
Fig.(2) at 17 us . This result is consistent with experiments.”

In Fig.(2) at 0.5 u sec we see a rapid growth of the bubble near the edge of the laser
deposition region in the radial direction. This fact results from the solution of the Lalaplce
equation that forces large velocities near corners. The behavior is analogous to the appearance
of large electric fields induced at the neighborhood of charged edges. Increasing the numerical
zones around the bubble boundary by a factor of four does not change the results.
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Figure 2. Bubble expansion with a free boundary: bubble expansion and collapse in cylindrical

100

400

300

200 " ¥

)
VAR
000K

v,

\WAVAVAN \VAVAVAVAVAN
Aé‘#AVAVAﬂm\wm
V‘VAVAVAVA‘VA!A\VAVAVAV{MV
TAVAYAVAVAVAVAVAVAY,
LRI
‘Vg% AV AAAAAN éVAV

£
wavAvAnvATAv. v,y VAN
“)‘ﬁy ALY, ‘ﬂ A"

o
X
.

100

;,;«ﬁ;’”"(""
X/

FAVAVAYA
ATAYAYAY

AVA

0 .
-300 -200 -t0C

400
300

200

0
0.5us

100

100 200 300

400

300

200 K/\

100

Q
=300 -200 -100

400

N
1§A
T

300

AYAYAYSN
Y%I\“r?! %b
AT /s

TAN
AYAVAYANAN

N/

200

VAN

100

1)
N
>
&
K5
&

0
14 us

il Y,
%
S
Aﬁ%&
Ay 40
AR
NN
N/

100 200 300

\/

Ay
A

4

AV
A

7AN,
ral
AV

Vi
\/

VAV

LAV Y
R

VAV
N

<K

AN

A

7

a .
=300 -200 -10C0

0
17 us

100 200 300

coordinates 1 and z for various times, where lengths are in gm, times in us . Here

p.. =10bar T, =350°C.
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In Fig.(3) rq,ry, 7, , the bubble dimension in the right direction relative to the fiber tip

edge (0,0), and the bubble dimensions in radial and left directions, relative to the fiber tip edge
at  (0,100) respectively, are given as functions of time. It can be seen that the expansion to the
right lasts longer relative to the normal and left expansions. A typical relation between the

maximum dimension r,, and the time to the maximum 7,, for the various directions is,

T / T = ApafPeo / p , where Ay =0.7 .
From the solution to the flow potential ¢ we get a positive value when the bubble is
expanding away from the fiber and a negative value for the collapse stage. The flow potential

has a typical almost //|F| dependence on the distance [F|from the fiber tip in the various

directions.
Fig.(4a) and (4b) represent the maximum bubble expansion in directions
Fr» Ty -1y relative to the fiber tip edges (0,0) and (0,100) for constant ambient pressure p_ and a

varying initial bubble temperature?,, and for a constant 7, and a varying p.. The main

deviation is between the expansion to the right relative to the normal or left directions. The
deviation increases with increasing T, and decreasing p_, .

10 is
t (us)

Figure 3: Free boundary: Bubble dimensions rg,ry.rg vs time for the right (r,0), normal
(0,100 +r, )and left (—r,,]00)directions respectively relative to the fiber tip edges. Here

Poo = 10bar Ty = 350°C .
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Figure 4: Bubble maximum distances in the left, normal and right directions relative to the fiber
tip (r, ,ry .1y respectively), as (a) functions of 7} for a constant p., =J5bar; (b) functions of

Pe. for a constant T, = 200 C°,

In the following discussion we present a comparison between our 2D Rayleigh
model and a hydrodynamic simulation presented in Ref.(2). The system in Ref.(2) is
comprised of a fiber of radius 700 pm which delivers energy of 0.317 mJ. The laser
energy is deposited exponentially in the z direction with an absorption length of /, =7 um .
In the radial direction the laser deposition is uniform up to /00 um and beyond that
decreases as a Gaussian with a factor of 1/e in a length of /0 wm. The energy included in
the Gaussian is 20% of the total laser energy. In our 2D Rayleigh model we include only
the energy confined inside the expanding bubble. We exclude 37% of the energy outside
the absorption length /,. We also subtract 7% of the total energy in the Gaussian tail, and
6% of the energy emitted as acoustic waves. Thus the amount of energy responsible for
bubble expansion is about 50% of the total energy. This energy is spread homogeneously
in front of the fiber tip in the 7 um absorption length. This energy imposes an initial
bubble temperature of about 200 oC.

Figure (5) presents the average bubble radius defined in Ref.(2) Rp =( ab® )l /2 as
a function of time, where 2« is the maximum expansion of the bubble along the symmetry
axis z and b is the maximum bubble expansion in the radial direction for a given time. A
general agreement of about 720 um expansion and collapse time of about [0 fsec is
obtained. The maximum in Rp is obtained earlier in Ref.(2) at 4.5 i sec and in our model
at about 6.5 i sec . We should remember that our system is just an approximation to the

system solved in Ref. (2). For better agreement we should compare our model with
hydrodynamic simulation for the same system. Such comparisons will be done in the
future.
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Figure 5: Bubble average radius vs time for the free boundary case, with fiber radius 700 um
and p.. = 10bar . Solid lines are our results for bubble initial temperatures Ty = 180 °C and
200 °C. Dashed line is from Ref.(2), Fig.(8) with energy delivered of 0.317 ml.

4.2 Case (b): A bubble expanding in a confined channel.

In the case of a bubble confined in a channel, the fiber and the channel are two coaxial
cylinders with a distance d between them. The boundary condition on the channel’s face is
homogeneous Neumann, assuming a rigid boundary with no fluid penetration ((V¢ ), =0).

The bubble for p,=10bar, T,=350°C and d =250 um, at several times is shown in

Fig.(6). Initially the flows are similar. Then the radial flow interacts with the channel boundary
and 1s significantly reduced. This increases the flow mainly to the right of the channel. The
expansion and collapse times are larger relative to the free boundary case. However the collapse
from the right and left directions are much faster than from the radial direction, which causes a
large distortion in the bubble (see Fig.(6) at 27 us) . We will consider the later time collapse in

future work.

The slow expansion and collapse of the bubble in the radial direction is a consequence
of the rigid channel. This condition is valid for a vessel wall covered with cholestero! which
has Jost its elastic properties. While the flow potential on the bubble boundary ¢ in Eq.(9)

depends on the ambient pressure p,, , the bubble boundary velocity depends on V@ . When the

bubble boundary comes closer to the channel wall the solution of the Laplace equation imposes
a flat flow potential in the radial direction connecting the bubble boundary and the channel
wall. The flat potential causes slow expansion and collapse in the radial direction. This is
related to the incompressibility of the fluid, imposing higher flows in both the +z and —z
directions.

A more realistic boundary condition will be to include the elastic properties of the
vessel wall. This will require extending our 2D Rayleigh model to include elastic and plastic
properties of the system.
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Figure 6: Bubble confined in a channel: expansion and collapse in cylindrical coordinates r and

z for various times where lengths are in gm and times in s . Here p_ = [0bar Ty = 350°C.
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An important property, which we ignore here, is the acoustic wave emission by the
bubble. These waves can be partially reflected by the channel wall and affect the bubble
expansion. The effect was considered in Ref. (2) by hydrodynamic simulation using an
appropriate EOS for the channel wall. This effect further delays the bubble expansion and
collapse. However, in Ref. (2) the elasticity of the channel wall and its resistance (o
deformations were ignored.

The three distances rg ,ry .y in the right, radial and left directions as functions of time are

plotted in Fig.(7). Initially, expansion is similar in the three directions till the radial flow
approaches the channel boundary and the radial distance is reduced relative to the others. The
flow potentials from the bubble’s edges to the right and left directions are a decreasing function
of the distance. The radial direction has a flat flow potential and consequently a very slow flow
relative to the right and left directions.

In Figs.(8a), (8b) we present the expansion timez needed for full expansion and the
maximum distance r in all three directions as functions of the channel dimension . This gives
the asymptotic behavior which connects channeled systems and a free boundary system as
d increases to large values. The expansion and collapse petiods in radial direction are much
longer in the channeled case than in the case of free boundaries. This causes the collapse from
the right and from the left, to progress faster than from the other directions and consequently, a
completely different structure of a collapsed bubble is obtained.

300

250

Figure 7: Bubble confined in a channel: bubble dimensions vs time for the right, normal and left
directions relative to the fiber tip edges, rg.iy .7y, respectively. Here p, = 10bar and

T, = 350°C.
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Figure 8: (a) Time 7 and (b) distance r for maximum expansion, as functions of d, for right,
normal and left directions. Here p., = 10bar Ty = 350°C.

5. CONCLUSIONS

A potential flow method was applied to obtain a 2D Rayleigh type model for bubble
expansion and collapse. The main assumption is that the inside of the bubble is homogeneous in
pressure and density as is usually assumed in a Rayleigh model. The method is based on solving
a Laplace equation for the flow potential in the outer bubble region based on a moving
boundary condition for the bubble boundary. The 1D Rayleigh bubble expansion is a special
case of our 2D model. We find the method flexible to consider various tissue boundary
conditions and geometry. We solve a fiber in a free boundary as well as a fiber in a channel.
The method can be applied in various realistic medical applications.

The 2D Rayleigh model presented here is much faster and simpler than the 21D
compressible hydrodynamic simulation. It can be applied for design and understanding of
fiber based medical therapies. The accuracy of the method should be tested by detailed
comparison with hydrodynamic simulations, and experimental measurements.

This flow potential method should be extended to include other physical mechanisms

that affect tissue behavior including surface tension, viscosity, acoustic emission, and strength
and failure properties.
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