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GUIDING CENTER HAMILTONIAN

Use guiding center approximation leading to drift hamiltonian
2
P, cp,
H=Zm " e‘*’("’"a"é“’z)

Assume cylindrically symmetric E-field skewed in X-Z plane to a constant
B-field in the z-direction by an angle B (see figure -1). That is

2

o(xy.z) =9 f \/ ( X COSB - Z.Sinﬁ ) + y2

Apply the following extended cononical transformation

- dp. i dx, g
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m Q2 X dt ox dv  dp,
-)E_xcosﬁ- z sinf 5 . p, cosP - p, sin
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5 _ 2.00sp + x sinB 5 - p, cosp +p, sinP
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This gives the hamiltonian

g(;,gx ,EZ)=%(EZCOSB'5><35“B )2 - Ezf[;;z +(5xcos[3+ﬁzsin{3 )2]

2 ef @ : 2 2 1 ‘3’/(9”'0)
where b :E;x?z(—é) A A =z;t---9----;;---——é- ~0 (1)
o (%/%)
__4n92
Pomal

There are two canstants of the motion, H, since the hamiltonian is time
translation invariant, and, 52, since the hamiltonian is z translation invariant.
Some values of ¢ and A for various density profiles is shown in table 1. X-Y
orbits about a wire, uniform density, and n=exp(-R) are plotted on the attached
graphs.
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EXISTENCE OF CLOSED ORBITS

A restriction on the range of b where closed orbits can exist can
be obtained by examining the kronecker index of the vector field about singular
points of the vector field. This can be done by the following reasoning. Let a

vector field be defined on R2. Suppose there exists a closed bounded orbit,
defining a closed manifold M'. This orbit encloses k singular points of the
vector field, Py. The index of this vector field about this curve will be +1 (see

figure 2). Since the sum of the indexes about the singular points enclosed by
the curve will equal the index of the vectar field about the curve, there must be

at least on P; with index greater than zero. Conversely, if there does not exist

a P; with index greater than zero there can not be any bounded orbits.
Now let's examine the index of the vector field to see what this

implies for the dynamics being analyzed. Solve the Hamiltonian for X2

§2=-(ExcosB+Ez sinf )2+ g[-_%(-ﬁ+7}('52 cosp - p, sinB )2)]
b

—

where

g=(r")

Now expand g to first order

2

oos)

>'<z-(ﬁxcosﬁ+ﬁzsinﬁ)2+g(io)+ e ao)

331—2(~ﬁ+-12-(520083~5x8iﬂ6 )2)
This equation can be written in the form

2 2
2 - b b
" *a(F’x*"z“g) ‘(E'C)

with
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.2
sin B

o B°

2
a=C¢cos -

b =p, sinf cosp ( 2+—1-2-)

c=5§(sin2[3— E;gf—) :; +goigg(;_°_), . g(go)
2B _
dg(io)
dg

This is the equation of hyperbola (index=-1) or an ellipse (index=+1) depending
on the value of a. Obviously if a<0 for all points no closed orbits can exist.
Therefore if closed orbits exist

1 1
2 ) 2
tanB < BJy2 = b(f (ﬂ)) = _é’ ! (_"__p___) - b~ ma

n nex ,/4‘;5 p/lc e Q\/_?.-
2
<@ > P
where ( 2 ) _ 2 J- lgn(r) rdr
@ P*

A SIMPLE WAY TO EXAMINE CLOSURE

Imagine an electron executing an E| x B orbit about a wire skew

to a constant B-field (see figure 3). The time for the electron to execute one
of these orbits is

1 P pB
wy VY4 cC Ep cosP
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At the same time there is a paralle! acceleration to B
e .
- —| E sin )
8B = m( o SP
The component of this acceleration perpendicular to the wire is
G i(-E sinB)'
ai|8 Lwire [ m P sinf
The criteria we shall impose to insure closure is that the distance that the

electron travels due to this acceleration perpendicular to the wire should be
less than the distance the particle is from the wire.

1B Lwire "% <P

This gives the following condition on tanp

@ E /(e/32)

Q plA,

This approximate condition is the same as the condition obtained through the
analysis of the dynamics.
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Table 1.
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Figure 2.

k
+1 = index of . v on M = E index on 9B;
i=1

saddle ==> index = -1

ellipse ==> index = +1
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Figure 3.
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Case 1. Wire
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Case 2. Uniform Cylindrical Charge

Y US. R

V = +0.00
= +0.20

-1 ; Pz = +0.00
{H= -0.80
{aH = +0.20

Max v = +5.00

{Max X = +5.00

,.
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Case 3. n=exp(-R

conrs
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¥ US. H
+30.00
+3.00
+0.00
+0.50
-0.50
= +3.00
= +3.00

¥ US. H
+30.00
+35.00
+0.50
+1.50 4
-0.50
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E-field for n = exp(-R)

0.3
1/R + Ofexp{-R}]
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Potential for n=exp(-R)
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