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Abstract*

We say that a bound electron-proton system is a guiding
center atom when the electron motion is classical and
can be treated with guiding center dynamics. The
cyclotron radius for the electron must be small
compared to the electron- -proton separat:on Such
atoms are expected to occur during the initial phase of
recombination, when a proton is introduced into a
strongly magnetlzed and cryogenic ‘electron plasma 1
This paper discusses the three-body recombination
process that produces such atoms. Equations
describing the evolution in the state of the guiding
center atom are derived from the BBGKY hierachy for a
guiding center electron plasma. These equations are
examined analytically and simulated numerically using a
Monte Carlo method. The recombination rate and other
details of the recombination cascade to deeper binding
are obtained.
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 Basic System

Ti.L~4°K
Tp-t10°K TS
~1eV/kg Tg ~4°K

How fast and by what mechanism will a proton and an
electron recombine into hydrogen?
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Anti-matter Analogue

+V ground +V

TiJ_"‘4°K
Ti[l"1200°K
~ 1 eV/kB

How fast and by'w'hat mechanism will an antiproton and
a positron recombine into antihydrogen?
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 parameter Regime
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Guiding Center Dynamics

Ordering of Frequencies
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Collisional 3-Body Recombination
Dominates at Low Temperatures
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At low temperatures the temperature scaling of this rate (T )
makes 3-body recombination the dominant process.

Monte Carlo Calculation of Rates

For B=0,
the calculation by Mansbach and Keck shows

o -
Rate=0.76(4) n bsve

[P. Mansbach and J. Keck, Phys. Rev. 181, 275 (1969).]
[B. Makin and P. Mansbach, Phys. Rev. Lett. 11, 281 (1963).]

For rg<<b,
we have calculated
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Theoretical Framework

Consider ensemble of

(1) fixed p at origin
(2) N positrons undergoing guiding center dynamics

with boundary conditions
(1) thermal equilibrium at large distance from p

(2) positrons which reach deep binding are removed and
returned to the distant plasma

‘Z

Ri.noay = Steady state flux to deep binding




State of Guiding Center Atom

For convenience we use f,(e,ep) where
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Bottleneck

The one way thermal equilibrium flux through an e=constant
surface scales as

£

flux ~ &

4
€
dominated by the phase space factor, 1/¢3°, and the Boltzmann
factor, e¢. This flux has a strong minimum at e¢=4.

In steady state, the rate through any ¢ surface will be a constant.
It is obvious that this rate can not be larger than the minimum flux
through an e=constant surface. Therefore, the distribution
function for states above the bottleneck will nearly attain its
thermal equilibrium value and below the flux minimum the
distribution function will be significantly less than its equilibrium
value. This is in close analogy with water flowing through the
neck of a bottle, hence the name bottleneck.




Carlo Code

et flux

» uniform in space

particle sink
+ Maxwellian in veloc:ty

Numerical algor:thm is:

- Pick state of gusdmg center atom in thermal distribution. Colltde a posnron from
Maxwellian flux. Repeat these steps until an atom with energy below ¢ is formed.

 Once formed, continue to collide positrons with the guiding center atom. This will
trace out a trajectory in (g,ep) space. Do this until the state of the atom crosses g, or

€.
The reco_'mb__ination -_rate will be

S
<tlmefor formatton of atom whach crosses ef>

Rate recombine =

and the steady state d:stnbut;on fss(e ep) in the area between Eg and g4 will be
proportional to the amount of time spent in a AeAep box at (g,ep) divided by AeAep.




- Bottleneck Exists

Fraction of Atoms Initially Formed (&, =1) that
Make it to States with Energy > ¢ .

fraction that cross ¢

If @ bound positron makes it to a state below the bottleneck
of & = 5, then it continues to be more bound. This makes it
poss:ble to unambiguously define a recombination. The

rate for such recombinations is

5=
3 .B?’te.ﬂecombination = 0070(10) n .-b Ve




Steady State Distribution
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Time to Capture Positron

Energy vs. Average Tlme
Energy is. FII‘St Reached _j-:':i-;;ff;:s_ji-;_ﬁ;_ -
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Scaling of Time to Capture
Assume that the rate of collision of a positron with the atom is
proportional to the area within an adiabatic cutoff

2
Rate ~ T cutoft

The cutoff for small ¢ is the radius for which

rcutoff Ir.c:.uto*If —i——
—w,~1 = -+ " %
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For large € the above cutoff gets much smaller than the average
separation of the positron from the antiproton,

<r> 1

b ¢

Therefore, for large €, < r > must be used in place of rq ¢ 10
determine the rate.

From the numerics the scaling of the average step size has been
found to be

<Ag>~¢
Now

de Ag 1
Friabyv (Rate) (As) ~ % (small g)

g
~1 (large €)
£

Whose solution is
eft)~ t1/3 (small €)
~ t1/2 (large €)




Integration of lon-Electron System

By a series of canonical transformations the Hamiltonian for an
ion (full dynamics) and an electron (guiding center dynamics) can
be written as

H(R,Jz; v, py) =
Q;(pw— RV2meQ,p, cosw) + Hy(Jz, py)
R, J, constant

where
R = (Fi)ﬂ' me0 Vi B ”(;e)l
. e Bz
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- Further Work

If Vv, is finite, then
— .2
NeVeD << Wgg
m; = O | : _
is the worst case because the ion can run away to infinity before
the next collision. |

We will simulate this case.

Expect f, (JZ,JQ') to equal a constant ( not be proportional to eg)
outside the separatrix. This leads to the following prediction for
the three-body recombination rate.
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Transport Equation

Evolution is governed by the Liouville equation. Partial mtegrat;on
of this equation yields the BBGKY Hierarchy.

1-Particle Equation
Let fi =14(z4,r1,E45t) since by symmetry of;/06, =0

af1 af1 ) - a 82 afz ('[ ,2)
% =n| dxpdv — | V§ —=
ot A 821 E, f e =2 821 ([;1 - X2| ! aE1

Due to the fact that \"{5‘3 >> Ve b? N (_n_e b®<<1) the distribution
function relaxesto

fy = {9 (Eq,rq5t) + f§1)(z1,E1,r1 t)

Unbound Particles
OB, ryt) = _Me  gEi/keTo . fo(E
1 {E1,r;t) /\/ETCKBTG B(E1)

Bound Particles

Define

_ dz, . )
W(E,,r1,t)=n% me‘1’1 fr (Eq,rq;t)

where dN =2 1 ry W(Ey,ry:t) dE; dry

The evolution is given by

oW "0 [ 2 dzq \
= 2 —<1 | dxo dv — |v{f2(1,2)
ot 8E1l § mevfl 27723 ([“1 Xz‘) 1 o j




Diffusion Calculation

Consider the effect of large impact parameter collisions

[d = do >> x|

Solve for f, to 1st order in 1/[x,|.

fo=fyledf,  f2(1,2) = f(1)12)

2-Particle Equation

'"'82_. [V1 aa v, %) ] £,(1.2) = 0
Rr-%2 E, '23E,

which neglects close 3-particle collisions since
(n b3 <<1).
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Integration of this equation along the unperturbed orbits

Zo(1') = 2o+ Vo[t -1) Vis=Vy
Zi(t')=31003[031(t'“t)+%]
2 92 .92 m 0)282
W= - E1z__rm__+ 621 1
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(for simplicity we have assumed deep binding) yields
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Substitution into the 1-particle equation yields

W(Eq(, 1, t) 9 1 0 3 1O(Eq, 1))\
at - aE‘j {DII(E1’r1)n1:kBTe f1 (E1sr1)+ 3E1
where |
2 2 daqw 2 2 |
_ = {[8104 T
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Note the: |
(1) adiabatic cutoff for large d; (i.e., large o)

_;1—(}'2/3
I(c) ~ e /2 o
(2) importance of small impact parameter collisions.
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If we had retained ExB drift motion we would have obtained
D = D“ + D_L

where
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Variational Theory of Reaction Rates

Let's calculate the 1-way thermal equilibrium flux though the
surface E; =E..

R, = n"‘[ 2 1y dry dxz dVa (e /me) 2(1,2)
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di d e’
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adiabatic cutoff Mout= e~ Is imposed
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This integral can be approximated as
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where  g5=-E5/KkgTle
Rs has a minimum at e,=4.

The variational theory assumes

Ry = Rofes4) = 22 n"V,b° p,




Comparison of Monte Carlo Code's
Equilibrium One Way Flux
to the Analytically Calculated Flux.

One Way Flux in Equilibrium vs. ¢
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Master Equation

| ; )
Operating on the 2-particle equation with § mez; [ dxz dvz2 gnd

Eq
substitution of the result into the 1-particle equation yields

_QW(Egt,H;t) = n2§ dz fd%’zide V2[f2(z2“+°°) 'fz(z2='m)}

Eq

Now we set

fa{ zp=-o0) = f1(0)(E1,r1 ;1) fa(Ez)
fo(zo=+) = 1P{ET.11it) falE3)

! 7

where ( Ey, 1, Es, r'g) evolves into(Es, 1, E2,r2) over the course of a
collision.

Subsequently applying conservation of energy
E; + E'2 =E + B
and detailed balance

{ 27'cnr1T—Z~(§;—’nlfa(Ef)} k(Ey,r|Ef,17) =

e
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where
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yields the Master Equation

dp[Eq,rq:t o p(m“
all . R

where

p{E1,r;t) = 2nrf W(Eq,r1;1) _




