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Abstract®

The collisional equipartition rate between the parallel
and perpendicular velocity components is calculated for
a weakly correlated electron plasma that is immersed in
a uniform magnetic field. Here, parallel and
perpendicular refer to the direction of the magnetic field.
The rate depends on the ratio r,/b, where re=V 1/m /& is
the cyclotron radius and b=e?T is the classical distance
of closest approach. For a strongly magnetized plasma
(i.e., rs/b<<1), the equipartition rate is exponentially small
(~exp[-2.34(r./b)?%]). For a weakly magnetized plasma
(i.e., ro/b>>1), the rate is the same as for an
unmagnetized plasma except that r./b replaces Ay/b in the
Coulomb logarithm. (It is assumed here that ro<io;
otherwise the plasma is effectively unmagnetized.) This
paper presents a numerical treatment that spans the
intermediate regime r./b~1, and connects on to
asymptotic formulas in the two limits r/b<<1 and r/o>>1.
Also an improved asymptotic formula for the rate in the
high field limit is given. Our results are in good
agreement with experiments over eight decades in ro/b.t
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Definition of the
Equipartition Rate

Consider a pure electron plasma that is immersed in a
uniform magnetic field B=Bz. Let the velocity
distribution be of the form
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The collisional equipartition rate v is defined through the
equation
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Weakly Correlated Plasma

b << 7\,[)

where

b= e/ T = distance of closest approach

KDE\/ T/47ne? = Debye length

Scale Length for Magnetic
Field

r.= v/ Q.

where

v=+1/m = thermal velocity

Q.=e B/ mc= cyclotron frequency



Regimes of Magnetization

1. Effectively unmagnetized plasma*
( rc > xD )
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*S. Ichimaru and M.N. Rosenbluth, Phys. Fluids 13, 2778 (1970).
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Adiabatic Invariant
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Boltzmann-like Operator

In a weakly or strongly magnetized plasma (re<Ap)
dvnamical shielding supersedes Debye shielding.
Therefore we use a Boltzmann-like operator which omits

Debye shielding.
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substitute from
Boltzmann equation

Change to center of mass and relative velocities
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Use detailed balance

Use fact that center of mass dynamics and relative
dynamics decouple ( for uniform B)
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Binary Collision

fixed charge




Monte Carlo Evaluation of the
Equipartition Rate

Make a change of variables to the dimensionless

Y, v
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where we have used cylindrical coordinates for .

In the expression for I(r,/b), A(dul/2)is a function of
(uL,u, v, n.) determined by integration of the equations

of motion
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over the course of a collision.



To more efficiently do the integral for v, we change
coordinates from (u,,u;,y,n.) 1o (X1,Xz, X3, X4)
defined by
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One can easily show that the Jacobian for this
transformation is
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The equipartition rate can now be written as
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To make the Monte Carlo integration most efficient we
would like to choose
:}2

so that the integrand is reasonably uniform over the
whole domain of integration.
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We estimate the value of the integrand by picking N
(X1,X2, X3, X4 ) points from a uniform distribution for each
x; between 0 and 1. We integrate the equations of motion
using a Bulirsch-Stoer technique to find A(ul/z) The
equipartition rate is then |
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A second Monte Carlo calculation was done using a
rejection method to generate the initial configurations.
The equations of motion were integrated using a 4th
order Runge-Kutta scheme.
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Graph of Monte Carlo Results
with Asymptotic Expressions
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New Asymptotic Expression for the
Equipartition Rate in the Limit of Strong
Magnetization

Start with the Hamiltonian for the relative motion in
cylindrical coordinates
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Since 0 is cyclic p, is a constant of the motion. We can
therefore write
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Expand V(r,z) as a harmonic potential in r about its
guiding center (minimum), ry(z)

Vir,z) = Vg(z')+u Q22(2)[r—rg(z)]2




Change the independent variable from tto z. This leads
to the z-dependant Hamiltonian

H(r,pr;z) = i\/&t

Use the action angle variables (P,y) associated with the
r-degree of freedom and obtain the new Hamiltonian
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Make a pertabative expansion
P=PO 4+ PO 4+ . yo= @ 4yl

where the expansion parameter is 1/z.

Since dry/dz and dQ/dz are both of 4th order in 1/z we find
the equations of interest are
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Hence

PO = P, = pre-collision value
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z7 is the turning point where H =Vg(z7) + Po Q(zr) ,
and




We find exp[iAy©®] as a power series expansion in
(Vjo/ Qb )?®  and (vio/vip)® whose coefficients are
functions of ro and 1/z. We substitute this result into the
expression for (AE,)?2 and do the contour integration.
The resulting expression for (AE,;)? is used to obtain the
large magnetic field (r. << b) asymptotic expression
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Note that the 2nd and 4th terms have surprisingly large
coefficients. The first term dominates when r./b < 10°.



Monte Carlo Results Compared to
Asymptotic Expression for r./b<<1
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Asymptotic Expression for the
Equipartition Rate in the Limit of Weak
Magnetization

Montgomery, Joyce and Turner found that

N
I(B‘)" E '”( -5)

for r.<<b. This comes from an integral of the form

I(&)H 8n [ dn
b_ 15 5 ol

MJT uses integration along unperturbed orbits:

1. Upper cutoff arises naturally from
dynamical shielding

2. Lower cutoff is ad hoc
(orbits are not unperturbed)

Both arise naturally in Monte Carlo evolution so that the
constant is determined to be:

A=2.12(41)
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