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Abstract*

The collisional equipartition rate between the parallel
and perpendicular velocity components of a weakly
correlated electron plasma that is immersed in a uniform
magnetic field is calculated. Here, parallel and
perpendicular refer to the direction of the magnetic field.
The rate depends on the ratio r./b, where r.=VT/m/Q is
the cyclotron radius and b=e%T is the classical distance
of closest approach. For a strongly magnetized plasma
(i.e., ro/b<<1), the equipartition rate is exponentially
small (~exp[-2.35(r./b)*%]).! For a weakly magnetized
plasma (i.e., r./b>>1), the rate is the same as for an
unmagnetized plasma except that r./b replaces Ay/b in
the Coulomb logarithm.? (It is assumed here that r.<ip;
for rc.>Ap, the plasma is effectively unmagnetized.) This
paper presents a numerical treatment that spans the
intermediate regime r./b~1, connects on to asymptotic
results in the two limits r./b<<1 and r./b>>1, and is in
good agreement with recent experiments (see poster by
B. Beck et al.). Also an improved asymptotic expression
for the rate in the high field limit is given.
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Definition of the
Equipartition Rate

Consider a pure electron plasma that is immersed in a
uniform magnetic field B=Bz. Let the velocity
distribution be of the form
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The collisional equipartition rate v is defined through the
equation
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Previous Results

1. Strongly magnetized plasma
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2. Weakly magnetized plasma
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3. Effectively unmagnetized plasma
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‘Binary Collision
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Center of mass motion and relative motion decouple.
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Center of mass motion is unchanged during collision,
therefore
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Relative Motion

fixed charge




An adiabatic invariant exists in the limit

Qe Te >> 1,

where 1, is the duration of a collision.
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In a plasma, the adiabatic invariant produces a dynamical
shielding (for the exchange of parallel and perpendicular
kinetic energy).
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Therefore, we can use a Boltzmann-like collision operator,
provided that r.< Ap. The Boltzmann operator omits

Debye shielding (recall Landau's derivation of the Fokker-
Planck operator from the Boltzmann operator; Debye
shielding was included in an ad hoc fashion), but nothing
is lost if the dynamical screening length is shorter than the
Debye length.

A Boltzmann-like operator leads to an jntegral expression
for the rate
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Monte Carlo Evaluation of the
Equipartition Rate

Make a change of variables to the dimensionless
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and write the collision rate as
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where we have used cylindrical coordinates for U.
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In the expression for 1(5’—), A(u—l) is a function of

b 2
(Ul, Uy, \ll,m) determined by integration of the equations
of motion
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over the course of a collision.




To more efficiently do the integral for v, we change
coordinates from (UL,UH,W,_m_) to (Xi,X2,Xs,Xs)
defined by
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One can easily show that the Jacobian for this
transformation is
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The equipartition rate can now be written as
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To make the Monte Carlo integration most efficient we
would like to choose
r

so that the integrand is reasonably uniform over the
whole domain of integration.
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We estimate the value of the integrand by picking N
(X4, X2, X3, Xq) points from a uniform distribution for

each x, between 0 and 1. We integrate the equations of
2
motion using a Bulirsch-Stoer technique to find A(%—).

The equipartition rate is then
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A second Monte Carlo calculation was done using a
rejection method to generate the initial configurations.
The equations of motion were integrated using a 4tn
order Runge-Kutta scheme.
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Graph of Monte Carlo Results
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Analytic Expression for the Equipartition
Rate

One can write the change in perpendicular energy

2
- " - L - u =
during a collision as an asymptotic series for A(Mé%-) in

the limit u“-E<< 1. When the series is substituted into

the integral for v, the following expression was obtained
by O'Neil and Hjorth

I(e)=(248)¢e!/5 exp(—Ee?°) for e<<1
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A more detailed evaluation by Rosenbluth gives
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Monte Carlo Results Compared to
Asymptotic Expressions for r./b<<1
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