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MODELPREDCTING FRACTURING OF 
SHALE 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims the benefit of U.S. Provisional 
Appl. 61/607,564, filed 6 Mar. 2012, which is incorporated 
herein by reference in its entirety. 

BACKGROUND OF THE DISCLOSURE 

Currently, there is little understanding of how shales frac 
ture. At best, empirical models based on very simplified phys 
ics are used, but there is no way to relate geophysically 
observable properties of the shale to its geomechanical prop 
erties. Moreover, even given a geological model, there are 
also no computer models that can reliably predict the 
microseismic response of the shale fractures. Finally, existing 
methods of analyzing microseismic data utilize only a very 
Small amount of the information in estimating the origin of 
the microseismic events. 
A number of difficulties have led to such poor understand 

ing of how shales fracture. Primarily, understanding shale 
fracturing requires compiling together a great deal of infor 
mation. For example, the porosity and mineralogy of the shale 
may need to be known at multiple scales to understand shale 
fractures and the geomechanical response. Additionally, the 
coupled contributions of fractures, variable pore types, 
microporosity, and mineral heterogeneity to geophysical 
response in shale may need to be understood. Other difficul 
ties lie in properly estimating the errors involved in predicting 
factures in shale and in the possibility that the data can have 
pronounced anisotropy, which would affect the accuracy in 
locating fractures in the shale. Some computational tasks 
(such as source Scanning, modeling of synthetic waveforms, 
etc.), may be cumbersome and may require significant 
resources and time to complete. 
Due to these difficulties, current stimulation techniques of 

areas having shale are based on little knowledge of how the 
shale is fracturing. Additionally, current production profiles 
merely indicate that active fractures in shale are at least 100 
meters apart. In the end, Such currently used techniques in the 
industry have low efficiency and use a protocol developed 
with only rudimentary knowledge of what is going on. In the 
end, operators are unable to explain or predict their results. 

Because of the poor knowledge available in the industry 
about fractures in shale, more understanding about the frac 
turing of shale in an area of interest can increase both the 
reserves and production associated with the area. In fact, 
increases in both reserves and production may be possible by 
an order of magnitude if more accurate understanding about 
the fracturing of shale can be determined. 

The subject matter of the present disclosure is directed to 
overcoming, or at least reducing the effects of one or more of 
the problems set forth above. 

SUMMARY 

A method, system, and program storage device are dis 
closed for predicting fractures in shale in an area of interest. 
One or more relationships between a geological parameter of 
shale are established with one or more of a geomechanical 
parameter and a geophysical parameter of the shale. For 
example, information characterizing geological parameters is 
obtained of the shale, and geomechanical and geophysical 
parameters are obtained of the same shale. The geological, 
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2 
geomechanical, and geophysical parameters can be charac 
terized at multiple scales, and the information characteristic 
of these parameters can be obtained by analyzing properties 
of the shale from one or more of core samples, well logs, and 
scans of the core samples. Empirical relationships are then 
developed between the obtained information on the param 
eters. For example, geomechanics of rock fracturing in the 
shale can be modeled by relating the geological parameters of 
the shale with the geophysical and geomechanical parameters 
of the shale. 

Observed data of the area of interest is obtained, and a 
computerized model for modeling or predicting fracturing of 
shale in the area of interest is produced by constraining a 
forward physics model of the area of interest with the one or 
more relationships for consistency with the observed data. In 
one example, seismic data is obtained in the area of interest 
using a seismic Survey system, and a computerized model for 
predicting fracturing of the shale in the area of interest is 
produced by inversion of the seismic data with the previously 
developed trends. Microseismic data can also then obtained 
in the area of interest using a microseismic Survey System, and 
the predictive model can be refined by inversion of the 
microseismic data with the previously determined model. 
The disclosed model combines the geological, the geo 

physical, and most importantly, the geomechanical properties 
of shales, and embeds this information in geomechanical 
computer simulations that predict the reservoir performance 
from fracturing of the shale and that also predict the associ 
ated microseismic generation. Since the geological and geo 
physical properties can be estimated from Surface seismic 
data, well logs, and geologic concepts with regional context; 
the performance of the fracturing can be predicted and opti 
mized. Additionally, since the microseismic data can be pre 
dicted; any simulations of microseismic events can be veri 
fied by obtaining microseismic data, and the disclosed model 
can be updated to be consistent with the observed microseis 
mic data. 
The approach disclosed herein can make significant 

improvements in recovery from shale. In addition to the ben 
efit of increased production, the approach disclosed herein 
can help predict how fracturing in shale can reduce the 
amount of water needed to fracture a formation. Stimulations 
can also be designed based on the knowledge of fracturing in 
shales to minimize the probability of contaminating ground 
water resources. In fact, just being able to estimate the prob 
ability or risk of fracturing a formation would be a major 
advancement in the industry. Finally, the disclosed approach 
makes it possible to determine what data should be acquired 
and how to use that data to predict shale fracturing. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1A shows a process for developing a model to predict 
fracturing in shale according to the present disclosure. 

FIG. 1B diagrams components for developing and using 
the disclosed model for predicting fracturing in shale. 

FIG. 1C illustrates a graphical representation of informa 
tion produced by the disclosed model for predicting fractur 
ing in shale. 

FIG. 2A shows a first workflow for developing the dis 
closed model to predict fracturing in shale. 

FIG. 2B shows a second workflow for developing the dis 
closed model to predict fracturing in shale. 
FIG.3 shows a relationship of geological parameters with 

geophysical and geomechanical parameters indefining trends 
for the petrophysical analysis of the disclosed model in FIGS. 
2A-2B. 
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FIG. 4 shows graphical representations of geomechanics of 
rock fracturing. 

FIG. 5 shows graphical representations of Bayesian seis 
mic event location. 

FIG. 6 shows an extended workflow of the disclosed model 5 
to predict fracturing in shale. 

FIG. 7 diagrams an inversion process utilized in the dis 
closed model. 

DETAILED DESCRIPTION OF THE 10 
DISCLOSURE 

A. Summary 
Disclosed herein is a model for predicting fracturing of 

shale, which can be used for a number of purposes disclosed 15 
herein. A process 100 shown in FIG. 1A is used to develop the 
predictive model. FIG. 1B diagrams some components for 
developing and using the disclosed model to predict facture in 
shale. These FIGS. 1A-1B will be discussed together in 
describing the development of the predictive model. 2O 

Initially, one or more relationships are established between 
geological parameter(s) of shale with geomechanical param 
eter(s) and/or geophysical parameter(s) of the shale (Block 
101: FIG. 1A). To do this, for example, information charac 
terizing geological parameters of shales is obtained at mul- 25 
tiple scales (e.g., micron, nano-scale, millimeter, plug, or 
seismic scales) (Block 102: FIG. 1A). As then shown in FIG. 
1A, information characterizing the geomechanical param 
eters and/or the geophysical parameters of the same shale is 
also obtained (block 104). 30 
The characteristic information can be obtained generally at 

locations having shale and/or at a particular area of interest 
related to a formation being analyzed for production and 
exploration. As will be discussed below, the characteristic 
information of the shale can be estimated from surface seis- 35 
mic Surveys, core samples, well logs, geologic information, 
scanned images of core samples, and other details. Briefly, as 
shown in FIG.1B, a surface seismic system 10 having record 
ing units 12, arrays 14 of Surface geophones 16, and seismic 
Sources 18 can obtain Surface seismic data for this empirical 40 
information. Existing or newly drilled wells 30 may be 
logged using techniques known in the art, and core samples 
can be obtained of shales to obtain the requisite information. 
As then shown in FIG. 1A, empirical relationships (i.e., 

trends) are developed between the obtained information on 45 
the parameters (Block 106). For instance, as shown in FIG. 
1B, processing systems 50 (e.g., computers 52, databases 54, 
and the like) can be used to generate the empirical relation 
ships (i.e., trends) in the shale are developed from the various 
forms of information characterizing the parameters of the 50 
shale. Thus, the processing systems 50 in FIG. 1B and asso 
ciated software programs 56 can be used to develop the rela 
tionships for use in computer simulations and the like. 

Next in the process of FIG. 1A, observed data of the area of 
interest is obtained (Block 108). For example, seismic data is 55 
obtained in the area of interest using various techniques for 
seismic imaging. For instance, as shown in FIG. 1B, Surface 
seismic systems 50 having recording units 12, arrays 14 of 
Surface geophones 16, and seismic sources 18 can obtain 
Surface seismic data of the area of interest for this purpose. 60 
Other types of observed data can be obtained. For instance, 
the observed data can include, but is not limited to, compres 
sional Surface seismic data, converted wave seismic data, 
microseismic data, well log data, geologic data on deposi 
tions in the area of interest, electromagnetic data, production 65 
data (e.g., pressure data, produced Volumes, or injected fluid 
Volume), or a combination of these. 

4 
Once such observed data is obtained, the process 100 of 

FIG. 1A produces a computerized model for modeling or 
predicting fracturing of shale in the area of interest by con 
straining a forward physics model of the area of interest with 
the one or more relationships for consistency with the 
observed data (Block 110). The forward physics model can 
include, but is not limited to, a full seismic wave propagation 
model; a geomechanical forward model; a spike convolution 
model; a raytrace seismic model; a hyperbolic moveout 
model for flat earth layers; an electromagnetic propagation 
model; a mode for basin evolution including pressure diffu 
Sion, sedimentation, or compaction; and a model of a geo 
logic process of sedimentation including wave induced flow, 
turbidite flow, or fluvial deposition. 

Constraining the forward physics model based on the one 
or more relationships for consistency with the observed data 
can use one of several data assimilation methods of the 
observed data with the one or more relationships. In general, 
the data assimilation method can include, but is not limited to, 
inversion, Bayesian inversion, linear inversion, an inversion 
finding a minimum of an objective function, an inversion of 
an estimated response Surface to the forward physics model, 
a heuristic optimization, or a combination of these. In this 
regard, a stochastic engine can be used to develop a response 
Surface. 

For example, in Block 110 of FIG. 1A, the predictive 
model of the fracturing in the shale can be produced by an 
inversion process of the seismic data with the previously 
developed trends. This inversion process can be enhanced by 
obtaining microseismic data of the area of interest. For 
example, as shown in FIG.1B, a system 20 of buried arrays 22 
of geophones 24 may be used to obtain microseismic data 32 
resulting from natural fault occurrences 34, from hydraulic 
fracturing operations 36 in a well 30, from production opera 
tions in the well 30, or the like. For instance, a microseismic 
event may occur due to an earthquake, a fault slippage, a 
production operation in the well 30, a fracturing operation in 
the well 30, or the like. 

Finally, as shown in the process of FIG. 1A, the model for 
predicting fracturing in the shale can be refined using addi 
tional information from other inversion stages and from inter 
pretation of additional seismic data (Block 112). As under 
stood herein, the disclosed model is a computerized model 
running as computer algorithms on the processing system 50. 
Operators can use the determined model in exploration, treat 
ment, and production of a reservoir in the area of interest. 

Although hinted to above, operators make various deci 
sions to determine what data to acquire to create the model So 
fractures in the shale can beforecast. Typical decisions made 
for data acquisition include, but are not limited to: selecting 
location for drilling wells, selecting what well logs to acquire 
in a well, determining whether to monitor microseismic 
events associated with the fracturing of the shale from a 
particular well, deciding whether multicomponent Surface 
seismic should be acquired and where, and determining 
whether data from one or more microseismic buried arrays 
should be acquired at the same time as the Surface seismic 
data. These and other considerations will be appreciated with 
the benefit of the present disclosure. 
As a result of developing and refining the disclosed model 

for predicting fracturing in the shale, a graphical representa 
tion 150 of information as shown in FIG.1C can be produced 
by the disclosed model. In general, the disclosed model can 
provide stratigraphic data on various layers 152 and bound 
aries 154 in the shale of the area of interest, such as a target 
reservoir of a formation. The model can also provide detailed 
information (i.e., structure, parameters, properties, etc.) 
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about those various layers 152 at multiple levels of scale 156. 
A level of certainty of the information may also be included in 
the disclosed model. 

Using the disclosed model and the representative informa 
tion it can provide, operators can predict how the shale in the 
area of interest will fracture during fracturing and other 
operations in the well 30 in the target area. Operators can also 
use the predictions of shale fracturing to plan and execute 
various operations, including where to drill wells in the area, 
what additional data to obtain of the formation, how and 
where to perform fracture treatments of the formation, etc. 

Finally, as shown in the process of FIG. 1A, operators can 
use the disclosed model for predicting fractures in the shale to 
actually predict and plan various operations and resulting 
fractures in the area of interest (Block 114). As shown in FIG. 
1B, for instance, being able to predict or forecast fractures in 
shale, operators can plan facture operations 36 in the area of 
interest. Other operations can also be planned, such as fluid 
treatments, drilling boreholes 30, production from boreholes 
30, etc. In fact, forecasting fractures in shales can impact 
several types of operations. 

Ultimately as shown in Block 114 of FIG. 1A, in response 
to Such operations, operators can obtain microseismic data 
from fractures or microseismic events occurring in the shale 
as a result of the determined operations, and operators can use 
the microseismic results to verify and refine the predictive 
model based on the microseismic data obtained. Again, as 
shown in FIG. 1B, the system 20 of buried arrays 22 of 
geophones 24 may be used to obtain microseismic data 32 
resulting from natural fault occurrences 34, from hydraulic 
fracturing operations 36, or the like, which were predicted, so 
the results can be used to verify and refine the predictive 
model. 

Being able to characterize the fracture behavior of the shale 
in the area of interest using the disclosed model offers opera 
tors a number of useful benefits. For example, operators can 
use the predictive model to minimize Surface disruption, help 
protect groundwater, increase the efficiency of hydraulic frac 
turing, and better manage fluids used in gas development 
from shale. More specifically, the predictive model can pro 
vide operators with more comprehensive information about 
the geological, geophysical, and geomechanical properties of 
shales in the formation. This information can then be embed 
ded in geomechanical computer simulations to predict both 
the reservoir performance from a fracturing operation and the 
associated microseismic events generated from Such a frac 
turing operation. 

Additionally, as noted above in Block 114 of FIG. 1A, the 
predictive model can also predict the microseismic events 
expected from a fracturing operation or other Such operation 
in the shale of the area of interest. Using microseismic data 
obtained in response to such operations, operators can verify 
the computer simulations of the predictive model developed 
and can then update the model So it is consistent with the 
observed microseismic data. For instance, the predictive 
model can assimilate microseismic data obtained from multi 
component geophones, both P and S waves, and Surface seis 
mic data in an integrated Statistical way to give the largest 
number of events with minimum uncertainty in both their 
location and moment magnitude tensors. This microseismic 
modeling can improve the Velocity and attenuation models 
(with uncertainty) used in locating microseismic events and 
used in Surface seismic imaging. 

Finally, the predictive model can improve stimulation 
methods, increase the producible Volume of a reservoir asso 
ciated with a particular well, and characterize Subsurface 
properties so that Subsurface Zones with poor productivity 
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6 
will not be drilled. The predictive model can be used in the 
design of treatment protocols and plans that minimize the 
probability that groundwater resources will be affected. 
Finally, the predictive model can be used to control the size 
and orientation of a stimulated Zone, maximize the stimulated 
Zone per Volume offluid injected, and lead to treatments using 
less fluid. These and other useful benefits may be found. 

B. Predictive Model of Fracturing of Shale 
With a general understanding of how to develop a predic 

tive model of fracturing in shale and how the model can be 
used, discussion now turns to more particular details on how 
to develop the predictive model. 

FIG. 2A shows a workflow 200 for developing the dis 
closed model for predicting fracturing in shale. The workflow 
200 includes multiple stages interacting with one another to 
first build and then refine the disclosed model for predicting 
the fracturing in shale. In general, these stages include a 
petrophysical modeling stage 230, a multi-component Seis 
mic imaging stage 240, a model-based inversion stage 250, 
geomechanical simulation stage 260, and microseismic 
analysis stage 270. 
The end result in FIG. 2A is a verification stage 280 in 

which fractures predicted by the disclosed model with a level 
uncertainty are compared to actual microseismic data mea 
Sured by the microseismic analysis stage 270. In a general 
sense, plots of microseismic event hypocenters can be com 
pared to predicted responses. As will be appreciated, the 
information provided by the microseismic events can reveal 
details of the interplay of rock properties and fracture treat 
ment. This comparison can be used to Verify and correct the 
predictive model. 

FIG. 2B shows another (looped) workflow 200 for devel 
oping the disclosed model for predicting the fracturing in 
shale. Many of the same stages 230, 240, etc. as used in the 
workflow 200 of FIG. 2A are used in FIG.2B. However, this 
second workflow 200 uses a geomechanical inversion stage 
262, which includes geomechanical forward modeling of the 
predictive model to give the microseismic response. In other 
words, the geomechanical inversion during stage 262 con 
strains the predictive model to give the microseismic 
response, which can be verified by actual microseismic analy 
sis 270. To do this, the geomechanical inversion 262 can be a 
Bayesian inversion that constrains the model to fit the 
observed microseismic data. 

Moreover, this second workflow 200 in FIG.2B operates in 
a looped fashion. In particular, based on the microseismic 
data, the geomechanical inversion 262 constrains the predic 
tive model to give the microseismic response as noted above. 
Information about the microseismic events can be used to 
update the velocity model, especially in the near vicinity of 
the microseismic event location. This updated velocity model 
can in turn be used to improve Surface seismic imaging or 
improve positioning of other near-by microseismic events. 
Accordingly, details of a resulting near Surface Velocity 
model 265 can be used as input to the multi-component seis 
mic imaging 240 to provide a more detailed model 245 having 
horizons and velocity model data to which markers of the 
wells 244 and stress and stratigraphy of the geology 246 can 
be applied. 
The following description will focus primarily on the 

details of the workflow 200 in FIG. 2B. The stages 230, 240, 
etc. integrated into the workflow 200 of FIG. 2B produces a 
model with uncertainty based on an inversion of a multiple 
component dataset, wells, and geologic concepts. For 
example, results from the petrophysical analysis stage 230 
and multi-component seismic imaging stage 240 provide 
geomechanical properties to the predictive model with uncer 
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tainty. The geological structure and parameters are estimated 
with uncertainty from the Surface seismic data obtained using 
an understanding the geomechanics of shales. Results from 
the geomechanic inversion 262 give a prediction of the pro 
duction and microseismic response, which can include the 
uncertainty. The predicted response is in turn constrained by 
comparison to the microseismic response with uncertainty 
analyzed with the microseismic analysis stage 270. 
Once the model is constrained by the Surface seismic data, 

petrophysical information, wells, geology, and microseismic 
data, operators can use the developed model to simulate vari 
ous modifications to the fracturing process and to optimize 
the productivity, water utilization, environmental footprint, 
and other aspects detailed herein. In the end, given the geo 
logical structure and parameters of the shale, the resulting 
model developed with this workflow 200 can predict the 
microseismic response and the production response of the 
shale's fracturing. 

C. Capabilities of the Predictive Model 
The disclosed model for predicting shale fracturing pro 

duces a number of capabilities. In a first capability, results of 
an experimental study of the multi-scale structure of shales in 
a field (petrophysical modeling 230) and a resulting effective 
geomechanical inversion (262: FIG. 2B) embedded in a high 
fidelity computer, or low fidelity, simulation are obtained. 
Surface seismic data (240) of the field is also obtained. Given 
this information, the geological structure and parameters of 
the field are estimated with uncertainty. Having the geologi 
cal structure and parameters, the predictive model then 
enables operators to predict the microseismic and production 
response of shale fracturing, which can include the uncer 
tainty. These responses can be directly validated by compari 
son to the analysis of the microseismic data with uncertainty 
obtained from the microseismic data analysis stage (270). 
With the validated measurements, different methods and 
details of the fracturing process can be simulated to optimize 
the productivity, water utilization, and environmental foot 
print of the fracturing process. 

In another capability, the predictive model uses a Bayesian 
inversion (250) to update the geological structure and param 
eters so the structures and parameters are consistent with the 
seismic observations made in the seismic analysis (240). A 
fast, low fidelity computer simulation (detailed below) can be 
used for the updating process (262: FIG. 2B) because many 
models may need to be geomechanically simulated in Such a 
geomechanical inversion (262: FIG. 2B). 

D. Stages of Workflow 
As can be seen, the workflow 200 can operate in an iterative 

fashion building the predictive model from one stage to the 
next and refining the model to assimilate observed measure 
ments and the resulting model. Each of the stages is discussed 
in turn below. 

In FIG. 2B, the development of the predictive model is 
based on an experimental study of the multi-scale structure of 
the shale in the petrophysical analysis stage 230. Using 
samples from wells 232, for example, the multi-scale struc 
ture of the shale is performed using 2D and 3D image data 
from a number of analysis sources, including 3D micro-CT 
(Computed Tomography), 2D SEM (Scanning Electron 
Microscope), 2D SEM-EDS (Scanning Electron Microscope 
Energy Dispersive Spectroscopy), and 3D FIBSEM (Focused 
Ion Beam Scanning Electron Microscope), for example. All 
of the image data from the analysis is co-registered, and a 
comprehensive Suite of shales are imaged as they fracture 
under a set of applied stresses. The characteristics of the 
comprehensive suite of shales can be developed from the 
particular area of interest or more generally from multiple 
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areas and can be stored in a database (54: FIG. 1B) associated 
with a processing system (50: FIG. 1B). 

Techniques based on statistical mechanics are then used to 
reduce the above-experimental data into numerical models 
for input into geomechanical computer simulations of the 
processing system (50: FIG. 1B). Both these new material 
models, as well as some well verified existing models, are 
incorporated into geomechanical simulation capabilities. 
Preferably, the geomechanical simulating capabilities can 
scale onto large computer clusters and make a minimum 
amount of assumptions about the physics. 
The development of the predictive model is also based on 

surface seismic surveys 242 and microseismic surveys 270 
obtained of the area of interest. In these surveys 242 and 240, 
microseismic and Surface seismic data is obtained using seis 
mic equipment and systems, such as Surface seismic systems 
(10: FIG. 1B) and microseismic systems (20: FIG. 1B). 
known and used in the art so that they are not detailed here. 

Finally, Bayesian statistical and other techniques are used 
to analyze the microseismic and Surface seismic data in an 
integrated way with uncertainty. This analysis then forms a 
basis for verifying the model 265 for predicting facturing in 
shale. As noted above, such a verified predictive model 265 
for optimization of shale fracturing with uncertainty is useful 
for optimizing the creation of fracture networks in a Subsur 
face during facture treatments and can lead to increased pro 
ductivity, reduced water utilization, and reduced environmen 
tal footprint of fracturing operations. 
As noted above, currently there is little understanding of 

how shales fracture, and empirical models are currently based 
on very simplified physics. There is no way to relate geo 
physically observable properties to the geomechanical prop 
erties. There are also no computer models that can reliably 
predict the microseismic response given the geological 
model. Finally, methods of analyzing microseismic data ulti 
lize only a very small amount of the information in estimating 
the origin of the microseismic events. 

For these reasons, the development of the disclosed pre 
dictive model first obtains experimental geophysical mea 
surements in the petrophysical stage 230 and obtains 3D 
imaging data 242 and 270 to enhance understanding of shale 
fractures at multiple scales. This stage 230 is described in 
more detail below. 

1. Petrophysical Analysis 
a. Identification of Multi-scale 3D Mineralogy and Defects 
As noted above, developing the disclosed model involves 

obtaining empirical information characterizing geological 
parameters of shales at multiple scales during petrophysical 
analysis. See Block 102 in FIG. 1A and stage 230 in FIGS. 
2A-2B. 
The empirical information can be obtained by using core 

analysis techniques from core samples in the area of interest 
or of comparable shales. Typical core analysis techniques for 
shale-gas reservoir rocks include the analysis of porosity, 
fluid Saturation, elastic response and permeability; however, 
several studies have shown that the results obtained from 
different core analysis laboratories can vary significantly, 
reflecting differences in analytical technique, differences in 
definitions of fundamental rock and fluid properties, or the 
millimeter-scale variability common in mudstones that make 
it problematic to select multiple samples with identical 
attributes. See e.g., Sondergeld et al. SPE 131771, 2010; 
Ambrose et al., SPE131772, 2010: Passey et al., SPE 131350, 
2010. A multi-scale approach to the characterization of the 
porosity, pore and throat size distribution, pore connectivity, 
permeability, geomechanical response, and petrophysical 
response is preferably used to better characterize mudstones. 
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Therefore, the predictive model preferably uses a multi 
scale approach to the characterization of the porosity, struc 
ture and connectivity, permeability, and petrophysical 
response, and multiphase flow response to better characterize 
mudstones. This includes characterizing the heterogeneity 
and connectivity of the primary constituents (e.g., kerogen, 
clay, minerals, etc.) at the micron to millimeter to plug scale 
and imaging and analyzing the porosity, pore throats, and 
connectivity at the nano-scale of these different constituent 
phases. Estimations of petrophysical and multiphase proper 
ties are made at the nano-scale and effectively upscaled to 
plug scales. Imaging is undertaken at ambient and at variable 
overburden conditions to characterize the evolution of core 
material structure and response under variable stress/strain 
States. 

The methods use 2-D and 3-D image data obtained at 
multiple scales via micro-CT, 2D SEM, 2D SEM-EDS data, 
and 3D FIBSEM data to characterize the pore structure and 
petrophysical properties of mudstones. Scales considered can 
range from the plug to the nano-pore scale. The analysis can 
identify mineral, kerogen, and clay distribution/connectivity 
at the largest scale possible; preferably at plug scale. High 
resolution FIBSEM data can then probe the porous micro 
structure of the key phases at the micro?nano-scale. X-Ray 
tomography can be used and returns stacks of images of 
intensity maps, which correspond to atomic number. A high 
intensity (bright) image corresponds to a high atomic number 
a low intensity (dark) image to a low atomic number. A 
pre-processing workflow can be used to identify target phases 
from the tomographic greyscale intensity images of the 
experiments. The target phase may be pores, grains, or any 
kind of material phase/microstructure of interest, each with a 
separable intensity spectrum. 

All of the above information can then be integrated to better 
understand pore structure and connectivity, geomechanical 
response, and the petrophysical properties of the complex 
rocks. As shown in FIG.2B, the pretrophysical analysis stage 
230 provides information on various empirical relationships 
or trends 300 associated with the shale. Turning briefly to 
FIG. 3, details of such trends 300 are shown. The trends 300 
relate geological parameters 302 of the shale with the geo 
physical and geomechanical parameters 304 and 306 of the 
shale. As shown, the geological parameters 302 include the 
minerology, geological facies, porosity and saturation, and 
stress and fractures (which are the state and initial conditions 
of the geomechanics of the shale). These geomechanical 
parameters 302 relate to the geophysical parameters 304 of 
the shale, such as density, bulk modulus, shear modulus, etc. 
and also relate to the geomechanical parameters 306 of the 
shale, Such as non-linear stress-strain, material failure, etc. 
For visual reference, FIG. 4 shows graphical representations 
310, 312, and 314 of the geomechanics of rock fracturing. 

In the pretrophysical analysis stage 230 of FIGS. 2A-2B, a 
number of tasks are performed to understand the geomechan 
ics of the shales. As hinted above, one task involves the 
experimental study of multi-scale structure of shales. This 
can be done by taking core samples that are well characterized 
in terms of their geological context (stratigraphic facies) and 
span the full range geologic contexts. For example, up to 230 
core samples of shales may be used. 

From these samples, 2-D and 3-D image data is obtained at 
multiple scales via micro-CT, 2D SEM, 2D SEM-EDS data 
and 3D FIBSEM data for each sample. High resolution FIB 
SEM data then probes the porous microstructure of the key 
phases at the micro?nanoscale. Through image registration, 
the higher resolution data is used to characterize the impor 
tant constituent phases at the nanoscale and upscale the prop 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
erties back to the larger core plug scale. Each sample is 
imaged under different applied stresses to understand where 
and how it fractures. This information is then integrated to 
better understand the porosity, pore, and throat size distribu 
tion, mineralogy, pore connectivity, permeability and their 
impact on geomechanical and petrophysical response. 

In the pretrophysical analysis stage 230, the experimental 
measurements are conducted on the shale samples to under 
stand their geophysical, geomechanical, and reservoir 
response as a function of fundamental geological variables. 
The fundamental geological parameters (302: FIG. 3) are 
expected to be geometry or geometrical arrangement (e.g., 
sorting, ductile fraction), composition (e.g., compaction, 
diagenesis), mineralogy (e.g., clay, TOC, quartz, carbonate), 
geologic facies (e.g., gran size, shape, organization, net-to 
gross), porosity and Saturation, and initial geomechanical 
state (e.g., stress and fractures). The mineralogy and geo 
metrical arrangement are expected to cluster as a function of 
geologic facies. 

There are expected to four independent geophysical 
parameters (304: FIG. 3) to which remote sensing could have 
significant sensitivity: density, bulk modulus, shear modulus, 
horizontal transverse isotropic (HTI) anisotropy, vertical 
transverse isotropic (VTI) anisotropy, orthorhombic anisot 
ropy, or a combination thereof. There could be additional 
parameters, such as density where geological (facies depen 
dent) correlations to other geophysical parameters in 3D 
would be needed and is measured. 
The geomechanical parameters (306: FIG. 3) are depen 

dent on the details of microscopic dynamics. They can 
include parameters, such as: linear and nonlinear stress-strain 
parameters, material failure parameters, joint friction param 
eters, crack tip propagation parameters, crack fluid proper 
ties, initial stress and fractures, brittleness, failure stress, and 
failure Strain. There are independent dynamical variable asso 
ciated with the geomechanics such as: stress, strain, and the 
distribution of defects such as fractures, dislocations and 
Voids. The multi-scale imaging and experimental analysis 
approach enables enhanced characterization of the porosity, 
pore and throat size distribution, pore connectivity, perme 
ability and geomechanical responses of mudstones. 

In addition to the task of determining multi-scale structure 
of shales, another task of the petrophysical stage 230 of FIGS. 
2A-2B develops an effective geomechanical model for the 
shales. In this task, the results of multi-scale structure experi 
ments are analyzed numerically to characterize the multi 
scale behavior of the shales. The goal is to understand at what 
representative scale the rock can be described by an effective 
model based on Statistical mechanical averages. It is expected 
to be a scale of between 100 microns to 1 mm. The numerical 
analysis can be similar to that used to understand the behavior 
of granites with significant predictive Success. 

In the numerical analysis, for instance, the dataset Supplied 
from the experimental analysis is used, and the microscopic 
material properties of the shale are “upscaled.” Such multi 
scale systems analysis offers two mutually complimentary 
model characterizations, one from a microscopic viewpoint 
and the other from a macroscopic viewpoint. These are 
described below as “upscaling and “continuum modeling.” 
respectively. Both approaches used together close the loop for 
data constrained modeling at all scales, allowing a seamless 
integration of Small-scale material complexity inside a large 
scale continuum model formulated on the basis of fundamen 
tal principles. 
The upscaling approach starts with a microscopic view, 

describing the discrete microstructure from X-ray CT-Scans 
obtained from the experimental analysis detailed above. The 
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goal is to calculate bulk average material properties of inter 
est. Upscaling can also be known as homogenization or data 
compression since the averaging process allows a direct cal 
culation of material properties. This can be used to inform a 
continuum model in the computer simulation of fracturing 
and microseismic emission (detailed below). 
The continuum model approach starts with a macroscopic 

view, informed either by an upscaling approach or alterna 
tively by a thermodynamic model incorporating the basic 
physics. Continuum modeling can derive large Scale bound 
ary conditions for the microscopic model and can provide a 
method for data acquisition. This data acquisition occurs 
through two different modeling techniques. Large-scale 
information can be additionally considered through forward 
modeling, and intrinsic material properties can be derived 
through inverse modeling which would then close the loop to 
the holistic microseismic data analysis with uncertainty (de 
tailed below). 

b. Upscaling 
The upscaling in the numerical analysis comprises four 

steps. The first step involves: (a) segmentation of the digital 
images and identification of mineralogy, defects and micro 
structure of target phases (obtained from the experimental 
analysis above). The second step involves: (b) Stochastic 
analyses of microstructure. This stochastic modeling is often 
skipped by commercial Suppliers of Computed Tomography. 
However, this step is useful for deriving statistically mean 
ingful upscaling of material properties. Percolation theory 
can be used as an instrument for upscaling, and the so-called 
local porosity theory can be used for derivation of a stochastic 
model. Although percolation theory and local porosity theory 
were first developed for the analysis of fluid flow networks, it 
is fully applicable to a more general microstructure frame 
work. Percolation theory underpins a variety of other material 
properties (e.g. percolation in thermal, electrical conductiv 
ity, elasticity). Statistical results are obtained from a series of 
calculations on target clusters with the aim of identifying their 
statistical distribution functions. Anisotropy of properties are 
calculated by means of the star-Volume distribution approach 
giving two empirical probability density functions, the isot 
ropy index and the elongation index. 
The third step in upscaling involves: (c) Representative 

Volume Elements and Percolation Theory. Representative 
volume elements (RVEs) are statistically representative vol 
umes containing a Sufficiently large set of microstructure 
elements such that their influence on the average macroscopic 
property (porosity, elasticity, permeability, etc.) has con 
Verged. Convergence of material properties does not imply 
that these properties can be safely scaled up. For this, addi 
tional parameters need to be calculated from the CT scan, 
notably, percolation threshold, correlation length, fractal 
dimension and critical exponent of correlation length from 
microtomography. 

Finally, the fourth step in upscaling involves (d) Upscaling 
Digital Materials. The basic new elementary building blocks 
for upscaling digital materials used are described in steps (b) 
and (c) above. Prerequisites for the identification of a digital 
material for upscaling are: (1) empirical probability density 
function, isotropy index and elongation index are identified, 
(2) the percolation threshold for the target phase of interest 
has been reached, and (3) the size of the sample is signifi 
cantly larger than the size of the correlation length for the 
target phase. Only when all three conditions have been full 
filled is it useful to derive material properties from digital or 
laboratory experiments for upscaling physical properties. If 
the material fulfills all necessary criteria for upscaling, then 
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12 
the digital material from the Computed Tomography (CT) 
image can be directly used for upscaling calculations. 

c. Continuum Modeling 
Having an understanding of upscaling, the details for con 

tinuum modeling in the numerical analysis are now 
described. Thermodynamically self-consistent continuum 
modeling formulated offers a robust way for material model 
ing. The consideration of thermodynamics is a relatively new 
development in computational mechanics. Thermodynamics 
has the advantage that it offers a direct access to a multi-scale 
framework since it defines a thermodynamic length and time 
scale for a specific problem of interest. From a macroscopic 
point of view, it is often possible to identify diffusion trans 
port processes that can be described empirically by a diffu 
sion equation (e.g. Fourier, Darcy, Fick, Ohm, etc.). The 
diffusion process defines a diffusional length scale for the 
multi-scale process system. The associated thermodynamic 
time scale based on the macroscopic concept of finite time 
thermodynamics, which considers the time scale of availabil 
ity of a reservoir. For the above list of diffusion processes, the 
associated time scale is therefore given by the availability of 
heat, fluid, chemical species, electrons etc. 

Material models based on the upscaling workflow using a 
thermodynamically consistent approach are then handed on 
to computer simulation of fracturing and microseismic emis 
sion (detailed below). 
As noted above, a geomechanical model of the shale is 

determined from the empirical information. See Block 104 in 
FIG.1. In developing the predictive model, the geomechanics 
of the shales are considered. The mechanisms dominant in 
fracture propagation within brittle materials is generally 
known, and hydraulically mediated fracturing is also more 
specifically known. However, there remain significant gaps in 
how this understanding applies to shales in situ. The role of 
spatially varying stress, anisotropic material properties, and 
the interaction between fracture fluid, pore fluid, gas phase, 
and mechanics remains an epistemic uncertainty in charac 
terizing the expected response. 
A number of tools exist that attempt to address this problem 

at different scales and fidelity, including low-fidelity com 
mercial tools with little or no coupling to the stress field (e.g., 
Schlumberger's fast-running tools and Golder Associates 
FracMan) to detailed, fully-coupled, computationally intense 
models. A number of applications span the middle range of 
fidelity and computational intensity. 

In the past two decades, increasing attention has been paid 
to the use of so-called “bonded particle' as well as polygon/ 
polyhedral DEM models, consisting of DEM (equivalently 
spring-mass-dashpot) systems with tensile and shear failure 
criteria for modeling fracture. Though often DEM models are 
micro-structurally defined, the use of bonded particle meth 
ods cannot be categorized as such, since the properties of the 
bonds between particles must be calibrated to match larger 
scale laboratory data. Here, these are classified in this study as 
null-order, micro-scale constitutive models. Numerous other 
constitutive models, however, exist to characterize the dam 
age accumulation from a continuum scale, including thermo 
dynamic consistency and anisotropy. 

Because of computational expense, a constitutive model 
including anisotropic plasticity and damage is preferably 
used in the disclosed model in lieu of a detailed micro-scale 
treatment of fracture. This facilitates the computer simulation 
of fracturing and microseismic events detailed below. This 
model is calibrated, however, using a high-fidelity simulation 
battery, using the constitutive model and associated param 
eters from the geomechanics of shales in a combined finite 
discrete element code with direct fluid coupling for single 
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phase flow through a fracture network as well as an arbitrary 
crack path fracture mechanics capability to appropriately 
capture the hydromechanical response during stimulation. 
More recently, the resultant seismicity from fracture has 

been characterized from bonded DEM models. These, how 
ever, are computationally intensive, and other constitutive 
models originating in the fracture mechanics and seismology 
fields appear to offer significant advantages in terms of com 
putational expediency coupled with decades of validation. 
These rate- and state-based friction laws continue to gain 
support from field and laboratory studies. Enhancement of the 
applicability of these relations is enhanced through the inclu 
sion of von Karman random fields. Because of the maturity 
and computational favorability, the disclosed predictive 
model preferably uses rate- and state-based friction laws as 
the basis for the source modeling in the medium fidelity 
simulation discussed in the computer simulation of fracturing 
and microseismic events detailed below. 
By assembling together multi-scale, dual porosity hydro 

mechanical simulation capabilities, a set of appropriate con 
stitutive models to capture the sub-RVE scale behavior of the 
reservoir for seismic source generation and coupled hydro 
mechanical response, and capabilities (discussed next) to 
propagate seismic signals to measurement stations, the pre 
dictive model provides an in silico platform to assess and 
predict reservoir response. This may be analogous to a dual 
porosity hydromechanical reservoir model augmented with 
robust adaptive multi-scale, explicit treatment of the hydrau 
lic fracturing event, and facilities to propagate seismic rupture 
events to ground response. 
As noted above, after characterizing information of the 

Various geological, geomechanical, and geophysical param 
eters of the shales, empirical relationships (e.g., trends) in the 
shale are developed. See Block 106 in FIG. 1A. After under 
standing the geomechanics of the shales (through experimen 
tal study of multi-scale structures and developing geome 
chanical structures for shales), for example, the disclosed 
model involves developing a computer simulation of fractur 
ing and microseismic emission. 

For a high fidelity simulation, a high fidelity model is 
develop and validated using both current material models and 
the results of the analysis above. This model simulates the 
behavior of the bulk material, the development of fractures, 
and the associated seismic wave generation. This task devel 
ops an anisotropic, thermodynamically consistent constitu 
tive model to capture plasticity associated with damage (simi 
lar to the model of Lomov) formulated for use in an implicitly 
integrated Lagrangian finite element code. The constitutive 
model also includes a tensoral stress-permeability relation 
ship based on Sub-scale geostatistically characterized joints 
and faults. Coupled with the constitutive model developed at 
ANU, this provides a comprehensive description of the 
behavior of shales through the range of behaviors expected 
during and after stimulation. The geostatistics and effective 
continuum hydrological behavior of the Sub-scale as well as 
the stress-permeability relationships for fractured media are 
derived from previous studies. 
The constitutive model is coupled with a subscale repre 

sentation of the geostatistically distributed joints and faults 
which are assessed for failure based on a strain criterion 
informed through the strain field calculated in the represen 
tative volume element (RVE). For each of the sub-scale dis 
continuities in the RVE that proceed into a rupture state, the 
seismic source term is based on a well-validated rate- and 
state-based friction law, which provides the necessary 
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moment tensor and time of rupture used to validate the code 
against the Gutenberg-Richter relationship assessed through 
the seismic data analysis. 

For low fidelity simulation, a low fidelity (fast) model is 
developed and validated by study of fundamental (single) 
fracture nucleation, growth, and seismic wave generation. 
The model abstracts the material as a coupled network of such 
fundamental units. Using results from running a medium 
fidelity model developed from the high fidelity model as well 
as available experimental data, parameters and functional 
relationships used in the low fidelity model can be tuned for 
specific geologies and sites to agree with the high fidelity 
results. 

2. Multi-Component Seismic Imaging, Model-Based 
Inversion, and Geomechanical Simulation 
As noted above, seismic data is obtained in the area of 

interest using various techniques for seismic imaging. See 
Block 108 in FIG. 1A and stages 240 in FIGS. 2A-2B. Then, 
a predictive model of the fracturing in the shale is produced by 
an inversion process of the seismic data and the trends. See 
stage 250 in FIGS. 2A-2B. 
As shown in particular in FIG. 2B, the workflow 200 

involves obtaining seismic data through seismic Surveys 242, 
and the data is used in multi-component seismic imaging 240 
to produce imaging data, Such as near, far, P-wave, and 
S-wave stacks. The seismic data can be obtained using any of 
a variety of surface seismic systems (10: FIG. 1B) having 
geophones, Sources, and the like. Wavelet information from 
local wells 252 in the area of interest can also be combined 
with the imaging data 245. 
The seismic imaging 240 and wavelet information for the 

wells 252 is combined with petrophysical trends 300 in a 
model-based inversion stage 250 to produce a predictive 
model 255 according to the present disclosure. As used 
herein, inversion refers to the process of assimilating the data 
with the model by taking the data and averaged model and 
using known physics to reduce the uncertainty involved in the 
model. 
The object of the model 255 is to have the seismic data be 

consistent with the observed simulation. The inversion stage 
250 therefore links the seismic data with the geomechanical 
inversion (262: FIG. 2B), in which the model 255 is assessed 
according to the geomechanical parameters of the shale. 
Then, the geomechanical inversion stage 262 can predict 
characteristics, features, and other details of fractures in the 
shale, indicating the fractures that can be produced and the 
effects on reservoir performance. 

3. Microseismic Analysis 
As noted previously, the geomechanical inversion stage 

262 can be enhanced by obtaining microseismic data of the 
area of interest. For example in FIG. 2B, the geomechanical 
inversion stage 262 is further enhanced by the microseismic 
analysis stage 270, which involves a number of details pro 
vided below. 

In general, the microseismic analysis stage 270 provides a 
holistic method of analyzing microseismic databased on the 
geomechanical manipulation of shales with uncertainty. 
Here, holistic means a Bayesian statistical method of inte 
grating a set of vertical buried arrays (22: FIG. 1) (one per 
square kilometer, and one per 20 meters to a depth of 100 
meters vertically, three component high sensitivity cemented 
geophones, both compressional and shear modes) for the 
location, moment magnitude tensors, Velocity field, and 
attenuation. A particular technique for obtaining and process 
ing microseismic events is disclosed in co-pending U.S. 
application Ser. Nos. 13/759,956 and 13/759,990, filed 5 Feb. 
2013 and entitled “Integrated Passive and Active Seismic 
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Surveying Using Multiple Arrays, which are both incorpo 
rated herein by reference in their entireties. 

Velocity information with uncertainty from surface seis 
mic imaging is used as an initial model. The buried array data 
is analyzed for the microseismic events associated with the 
fracturing, but use is also made of known “calibration” events 
Such as perforation events, string shots and Surface seismic 
Sources, along with naturally occurring seismic events. Meth 
ods such as Matched Field Processing and interferometry 
may be of significant utility. The deliverable is the statistical 
Bayesian data assimilation computer program. 
The analysis stage 270 can adapt existing algorithms to be 

applied to the geometries and anisotropies experienced in 
microseismic monitoring of hydraulic shale fracturing. This 
includes both the Bayesian location algorithm, Bayesloc, and 
the empirical matched field (EMF) detection algorithm. As 
the EMF technique is feasible with any master event, it may 
be tuned to identify anomalous signals such as the low fre 
quency long duration events observed in Some hydraulic 
stimulations. 
The results form the basis for a more holistic Bayesian 

analysis, which include the estimation of the Velocity, attenu 
ation, and the moment magnitude tensor as parameters in the 
Bayesian analysis. It is expected that interferometry be 
included to give sensitivity to the velocity between buried 
arrays and wells. 

a. Microseismic Event Location 
To validate the geomechanical inversion stage 262 with the 

microseismic analysis stage 270, it is desirable to improve the 
detected location of microseismic events as well as increase 
the sensitivity of detection. Microseismic locations are sub 
ject to error due to inherent uncertainties in the sub-surface 
seismic velocities and phase measurements; however, most 
location algorithms assume Gaussian statistics for a strongly 
non-Gaussian process, which results in poor error estimates. 
Bayesloc is a new algorithm in open source Software devel 
oped at Lawrence Livermore National Laboratory that avoids 
this limitation by using a combined Bayesian and Markov 
Chain Monte Carlo (MCMC) sampler to create a probabilistic 
estimate of the source coordinates of the microseismic events. 
This provides significant robustness in the presence of errors 
in the earth model and microseismic data and can simulta 
neously locate microseismic events, correct for errors in 
microseismic travel time predictions, assess the precision of 
arrival-time measurements, and determine the microseismic 
phase label for each arrival. Although prior information is not 
required, such information can be used to reduce Solution 
uncertainty. Although Bayesloc has primarily been used for 
regional and global data sets (> 100 km events), it has also 
been Successfully used to improve tomography. Finally, 
Bayesloc can be applied to geothermal micro-seismic 
datasets. 

b. Model Comparison 
In the microseismic analysis stage 270, the microseismic 

imaging process requires three steps: detection, location, and 
Source analysis (in Some implementations detection and loca 
tion are combined). To detail with these steps, Bayesloc pro 
vides both absolute and relative locations along with Baye 
sian (rather than Gaussian) error statistics. These techniques 
can be used to develop comprehensive datasets for compari 
son with geomechanics code output. The results of the model 
and data comparison, when buttressed by reliable Bayesian 
statistics, guide the next step of model and algorithm 
improvement. The eventual incorporation into an overall 
Bayesian framework requires common characterization of 
model results and observed data and may use a metric of 
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texture to compare model results to the observed data. FIG.5 
shows graphical representations of Bayesian seismic event 
location. 

E. Extended Workflow 
Finally as noted previously, the model for predicting frac 

turing in the shale is refined using additional information 
from other inversion stages and from interpretation of seismic 
data. FIG. 6 shows an extended workflow 400 for refining the 
disclosed model 420 for predicting fracturing in shale. Simi 
lar to FIG. 2B in which the workflow 200 include looped 
stages, a number of stages in this workflow 400 of FIG. 6 
interconnect and provide input to one another to build the 
predictive model 420. The stages include multi-component 
seismic tomographic inversion 402, geology 404, basin inver 
sion 406, seismic stratigraphic post-stack inversion 408, geo 
mechanical inversion 410, and Electromagnetic (EM) or 
Magneto Telluric (MT) inversion 412. Data for each of these 
stages can refine and improve the model 420, reducing its 
uncertainty, and the predictive model 420 may be developed 
using one or more of these stages. 
As noted herein, an inversion assimilates data using a 

physical forward model with effective medias (uncertainties 
are required). FIG. 7 diagrams an inversion process 430 uti 
lized in the disclosed model. In the inversion process 430, a 
model 432 is input into the inversion process 430 along with 
data 440, physics 442 (i.e., direct physical model or con 
straints involved), and an effective media model (i.e., aver 
aged physics or statistical average of physical models or 
constraints involved). The inversion process 430 then per 
forms the assimilation using known procedures in inversion 
technology and statistical physics so that a resulting model 
434 is constrained by having it fit the data 440. 
The predictive model disclosed herein can be used to 

understand the geological, geophysical, and geomechanical 
properties of shales and can be embedded in geomechanical 
computer simulations to predict reservoir performance from 
fracturing and associated microseismic events generated by 
fracturing. In other words, the predictive model can operate 
using a fast-running, hydromechanical forward simulation 
with user-based scenarios (i.e., what-if scenarios) to produce 
various simulation outcomes. Seismic monitoring can ana 
lyze the data stream to assess the error between the above 
predictions and the model, and seismic interpretation can 
ultimately refine the geomechanical model and boundary 
conditions so the model is more accurate in it predictions. 
As will be appreciated, teachings of the present disclosure 

can be implemented in digital electronic circuitry, computer 
hardware, computer firmware, computer Software, or any 
combination thereof. Teachings of the present disclosure can 
be implemented in a computer program product tangibly 
embodied in a machine-readable storage device for execution 
by a programmable processor so that the programmable pro 
cessor executing program instructions can perform functions 
of the present disclosure. The teachings of the present disclo 
Sure can be implemented advantageously in one or more 
computer programs that are executable on a programmable 
system including at least one programmable processor 
coupled to receive data and instructions from, and to transmit 
data and instructions to, a data storage system, at least one 
input device, and at least one output device. Storage devices 
Suitable for tangibly embodying computer program instruc 
tions and data include all forms of non-volatile memory, 
including by way of example semiconductor memory 
devices, such as EPROM, EEPROM, and flash memory 
devices; magnetic disks such as internal hard disks and 
removable disks; magneto-optical disks; and CD-ROM disks. 
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Any of the foregoing can be supplemented by, or incorporated 
in, ASICs (application-specific integrated circuits). 
The foregoing description of preferred and other embodi 

ments is not intended to limit or restrict the scope or applica 
bility of the inventive concepts conceived of by the Appli 
cants. It will be appreciated with the benefit of the present 
disclosure that features described above in accordance with 
any embodiment or aspect of the disclosed subject matter can 
be utilized, either alone or in combination, with any other 
described feature, in any other embodiment or aspect of the 
disclosed Subject matter. 

In exchange for disclosing the inventive concepts con 
tained herein, the Applicants desire all patent rights afforded 
by the appended claims. Therefore, it is intended that the 
appended claims include all modifications and alterations to 
the full extent that they come within the scope of the follow 
ing claims or the equivalents thereof. 

What is claimed is: 
1. A method of predicting fractures in shale in an area of 

interest, the method comprising: 
establishing one or more relationships between a geologi 

cal parameter of shale with one or more of a geome 
chanical parameter and a geophysical parameter of the 
shale; 

obtaining observed data of the area of interest; and 
producing a computerized model for modeling fracturing 

of shale in the area of interest by constraining a forward 
physics model of the area of interest with the one or more 
relationships for consistency with the observed data. 

2. The method of claim 1, wherein the geological param 
eters comprises one or more of geometry, sorting, ductile 
fraction, composition, compaction, diagenesis, minerology, 
geologic facies, grain size, shape, organization, net-to-gross, 
porosity, Saturation, stress, fractures, pore size, throat size, 
pore distribution, throat distribution, pore connectivity, or a 
combination thereof. 

3. The method of claim 1, wherein the geomechanical 
parameters comprises one or more of stress-strain parameter, 
material failure parameter, joint friction parameter, crack tip 
propagation parameter, crack fluid properties, initial stress, 
initial fracture, or a combination thereof. 

4. The method of claim 1, wherein the geophysical param 
eter comprises one or more density, bulk modulus, shear 
modulus, horizontal transverse isotropic (HTI) anisotropy, 
vertical transverse isotropic (VTI) anisotropy, orthorhombic 
anisotropy, or a combination thereof. 

5. The method of claim 1, wherein the forward physics 
model is selected from the group consisting of a full seismic 
wave propagation model; a geomechanical forward model; a 
spike convolution model; a raytrace seismic model; a hyper 
bolic moveout model for flat earth layers; an electromagnetic 
propagation model; a model for basin evolution including 
pressure diffusion, sedimentation, or compaction; and a 
model of a geologic process of sedimentation including wave 
induced flow, turbidite flow, or fluvial deposition. 

6. The method of claim 1, wherein establishing the one or 
more relationships between the geological parameter of the 
shale with one or more of the geomechanical parameter and 
the geophysical parameter of the shale comprises: 

obtaining first information characterizing the geological 
parameter of the shale; 

obtaining second information characterizing the geome 
chanical parameter or the geophysical parameter of the 
same shale; and 

developing an empirical relationship between the obtained 
first and second information. 
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7. The method of claim 6, wherein the geological, geome 

chanical, and geophysical parameters are characterized at 
multiple scales. 

8. The method of claim 7, wherein the multiple scales are 
selected from the group consisting of nano-pore scale, micron 
scale, millimeter scale, plug scale, and seismic scale. 

9. The method of claim 6, wherein obtaining the first or 
second information comprises analyzing properties of the 
shale from one or more of core samples, well logs, and scans 
of the core samples. 

10. The method of claim 6, wherein developing the empiri 
cal relationship comprises relating a given one of the param 
eters at one scale to another scale. 

11. The method of claim 6, wherein developing the empiri 
cal relationship between the obtained first and second infor 
mation comprises modeling geomechanics of rock fracturing 
in the shale by relating the geological parameters of the shale 
with the geophysical and geomechanical parameters of the 
shale. 

12. The method of claim 1, wherein the observed data 
comprises compressional Surface seismic data; converted 
wave seismic data; microseismic data; well log data; geologic 
deposition data; electromagnetic data; production data 
including pressure data, produced Volumes, or injected fluid 
Volume; or a combination thereof. 

13. The method of claim 12, wherein the observed data 
comprises error, and wherein the method further comprises 
accounting for the error in the observed data. 

14. The method claim 6, wherein obtaining the second 
information characterizing the geomechanical parameter or 
the geophysical parameter of the same shale comprises deter 
mining the one or more of the geomechanical parameter and 
the geophysical parameter from the characterized geological 
parameter. 

15. The method of claim 14, wherein determining the one 
or more of the geomechanical parameter and the geophysical 
parameter from the characterized geological parameter com 
prises upscaling microscopic geological properties of the 
shale. 

16. The method of claim 15, wherein determining the one 
or more of the geomechanical parameter and the geophysical 
parameter from the characterized geological parameter com 
prises deriving large scale boundary conditions of the shale 
by performing continuum modeling based on a thermody 
namic model. 

17. The method of claim 1, wherein constraining the for 
ward physics model based on the one or more relationships 
for consistency with the observed data comprises using a data 
assimilation method of the observed data with the one or more 
relationships. 

18. The method of claim 17, wherein the data assimilation 
method comprises inversion, Bayesian inversion, linear 
inversion, an inversion finding a minimum of an objective 
function, an inversion of an estimated response Surface to the 
forward physics model, a heuristic optimization, or a combi 
nation thereof. 

19. The method of claim 1, wherein obtaining the observed 
data in the area of interest comprises obtaining microseismic 
data in the area of interest using a microseismic Survey sys 
tem. 

20. The method of claim 19, wherein obtaining the 
microseismic data further comprises inducing fracture in the 
shale by performing a fracture operation in a well of the area 
of interest. 

21. The method of claim 1, further comprising refining the 
produced model by assimilating at least one of multi-compo 
nent seismic tomographic information, geologic deposition 
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information, basin evolution information, geomechanical 
information, electromagnetic information, and Magneto Tel 
luric (MT) information. 

22. A programmable storage device having program 
instructions stored thereon for causing a programmable con- 5 
trol device to perform a method of claim 1. 
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