
Many times we are faced with the business decision of
whether or not to develop a sand that is at the limit of seis-
mic resolution and near the noise level of the data. The crit-
ical issue is developing a reasonable certainty that there is
enough volume of hydrocarbons to develop. A popular
approach is to use Bayesian methods to determine the prob-
ability of an economic volume of hydrocarbons being pre-
sent. A problem with this approach when it is applied to
these marginal cases is a bias to the answer. Often, this
comes from a relatively strong sophomoric prior constraint
on the gross thickness and net-to-gross (N/G) of the sands,
imposed to keep the inversion focused on the correct seis-
mic reflector. The data are whispering what the answer
should be through the Bayesian apparatus, but this whis-
per is overwhelmed by the sophomoric prior constraints.
We found a simple solution to this problem—run the seis-
mic inversion several times using the output mean of the
previous inversion as the input mean of the next inversion.
This methodology made the difference, in conjunction with
a bandwidth improvement in the seismic data, in proving
that a well should be drilled. Unfortunately, the well did
encounter an acoustically soft lithology of the predicted
gross thickness, but it was a shale—the most likely failure
mode as predicted predrill.

Introduction to the problem and solution. There has been
recent interest and application of Bayesian seismic inversion
(Buland and Omre, 2003; Eidsvik et al., 2002; Eidsvik et al.,
2004; and Gunning and Glinsky, 2004). The main attrac-
tiveness of these methods from a business perspective is the
fact that they give an estimate of the uncertainty in the esti-
mate of the volumetrics of potential oil and gas fields. Many
times, this is the main contributing factor to economic uncer-
tainty, and therefore can be the deciding factor in business
decisions.

A classic decision is whether or not to proceed with con-
struction of an LNG facility. There must be a high degree of
confidence that the field will supply enough gas to deliver
on the contracts and be economic. This is translated into the
uncertainty estimation challenge to have the probability of
having the contracted volume to be 90% or greater (i.e., con-
tracted volume less than P90 volume). Often, the outstand-
ing challenge is that the gross thickness of the sands is thin
enough so that the magnitude of the reflection is not a lot
larger than the seismic noise level. In this situation, Bayesian
seismic inversion is helpful in determining the critical uncer-
tainty. That is, advanced technology is used when the answer
is not obvious. 

The influence of the choice of the prior in these subtle
cases can be a problem. The actual value is within a stan-
dard deviation or two of the contracted amount so that if
the prior is set greater than the actual value by an amount
on the order of the posterior standard deviation or more,
the posterior estimate of the median and the P90 volume
will be biased high by about a standard deviation. This will
cause the field to look safely economic when it is not. The
opposite is true if the prior is set less than the actual value.
There will appear to be significant risk that the field is not

economic, when it is probably economic. The decision should
not rest on the prior estimate of the volumes. 

A purely data-driven way to determine the median and
P90, not influenced by the prior assumptions, is needed. The
answer is surprisingly simple. Take the mean output of a
Bayesian inversion and use that as the mean of the input
for a second Bayesian inversion, but do not change the prior
standard deviation. Repeat this until there is not much
change from the prior to the posterior mean. Through this
iterative process, the Bayesian inversion is effectively whis-
pering whether the answer is high or low, allowing the bias
to be removed. It is an amazing outcome that the estimate
of the mean is biased to much less than a standard devia-
tion.

Another factor that is well known to help resolve the
uncertainty of net-sand thickness for thin sands is to increase
the bandwidth (effective resolution) of the seismic data. In
a sand that is at or below the resolution of the seismic data,
the net sand can be determined provided that the sand is
acoustically softer than the surrounding shale. Un-
fortunately, the gross thickness and N/G are not able to be
estimated. Once the bandwidth has been increased enough,
the gross thickness and N/G can be resolved. This may not
solve the problem of the bias if the reflection strength of the
resolved sand is not large enough or the noise is too large
to see the seismic reflector. The iterative process, in this
case, will still be needed to remove the bias in the estimate
of the gross thickness, net thickness, and N/G, not only the
net thickness of the previous unresolved case. 

We show that this iterative process is theoretically con-
vergent and works for a wedge model. We demonstrate the
idea on a small target called “Glenridding” under the main
pay sand of the Stybarrow Field, offshore Western Australia.
We show also the effect of increased resolution of the seis-
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Figure 1. Demonstration of the effect of the prior constraint on the bias of
the posterior distribution. (a) A=Prior probability distribution for the
desired flat top distribution. B=the practical Gaussian distribution and
C=the multimodal seismic likelihood. (b) Posterior probability distribution
using the desired flat top distribution, A�C, and the practical Gaussian
distribution, B�C.



mic data for this case. Use of this technology along with
improved seismic data will show an accumulation that is
probably economic.

Theory of inversion fixed points. We present a general
description of the problem and a sketch of the underlying
theory, skipping the details of the mathematical proofs. We
outline the starting assumptions in a little detail but pass
quickly to the practical conclusions of the theory.

This work is based on the Bayesian model-based seis-
mic inversion program (Gunning and Glinsky, 2004). In this
layer-based model, a useful prior constraint that makes the
inversion problem less multimodal is to focus the inversion
on the correct seismic reflection for each sand or shale layer.
This is done by imposing Gaussian prior distributions on
the layer reflection times, gross thicknesses, and N/G val-
ues. These constraints are made as weak as possible, but
strong enough to prevent a seismic “loop skip,” or trapping
in undesirable secondary local minima. This “lion taming”
of the objective function is demonstrated by Figure 1. Curve
C shows the probability of the model seismic being consis-
tent with the observed seismic as a function of the gross
thickness of the sand. The side lobes correspond to the sand
becoming thick enough that the reflector would correspond
to the top of another sand. The solutions that correspond to
these side lobes are not reasonable solutions and need to be
excluded. Imposing the Gaussian constraint on gross thick-
ness does this in curve B. Unfortunately, the resulting com-
pound probability, shown as B�C in Figure 1b, has a
maximum biased away from the desired local maximum of
curve C. What we would like to do is impose a prior con-
straint similar to curve A with a flat top. This type of non-
linear prior constraint is not used, however, since it breaks
the linearity of the inversion, and seriously inflates the
numerical demands of the inversion.

To harness the computational advantages of the Gaussian
prior (curve B), and the unbiased character of curve A, we
implemented an iterative inversion. We start with the nor-

mal Gaussian constraint on reflection times, gross thick-
nesses, and N/G and do the Bayesian inversion. We take
the resulting posterior estimates of the mean times, gross
thicknesses, and N/G and use them as the mean of the prior
constraints (standard deviations remain unchanged) for the
next Bayesian inversion. We repeat this process and stop
when there is little difference between the prior and poste-
rior means of the three properties.

In order for this process to work, the mapping of the prior
to the posterior means must be a compact mapping whose
fixed point has an effective constraint which will not bias
the solution, as shown by curve A in Figure 1a. By lin-
earizing the solution about the optimum point (as per
Equations 36 and 37 of Gunning and Glinsky), and by sep-
arating the prior constraint into the parts that will be itera-
tively updated and those which will not, it can be proved
that a fixed point exists and that the convergence is linear.
The fixed point is the solution to the problem with the prior
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Figure 2. Wedge model and the synthetic seismic. Wiggle traces are 
reflection coefficient data with a positive amplitude, shaded black, 
representing a reflection from a hard reflector over a soft reflector.

Figure 3. Results of iteration of inversion on the wedge model, starting
from two biased cases. Case 1 starts with a positive bias of 5 m (green
curves). Case 2 starts with a negative bias of 5 m (red curves). The
answer and fixed-point solution is shown as the thin black line. The initial
model and two iterations are shown. Both cases converge to the fixed
point. The error bar shows a representative standard deviation of the
solutions.

Figure 4. Map of Stybarrow Field with depth contours. The locations of
the four appraisal wells are shown. The cross-section location, shown in
Figure 5, is indicated by the red line.



Gaussian constraints removed on the updated parts. This
is exactly what is needed. A condition on the convergence
is that the linearized problem is not rank deficient, that is,
it is well-posed. This will be true as long as the sensitivity
matrix for all the parameters being iterated is “full rank.”
This means that care should be taken in the choice of the
properties that are iterated—the inversion should be sig-
nificantly decreasing the standard deviations of those prop-
erties and they should not be linearly dependent upon each
other. Details of the proof can be worked out from well-
known results in Tarantola (1987), and Golub and Van Loan
(1996).

Simple wedge model. To demonstrate and verify the unbi-
ased result of the iterative inversion, a simple wedge model
was constructed. It consists of three layers: a laminated
reservoir sand between two shales (Figure 2). The wedge
starts at zero gross thickness and linearly increases to a
thickness of 22 m. The sand is softer than the shale, and has
a N/G of 40%. The end member sand has a porosity of 27.4%,
a density of 2.2 gm/cc, and a compressional velocity of 2970
m/s. The shale has a density of 2.41 gm/cc, and a com-
pressional velocity of 3070 m/s. Convolving a Ricker wavelet
with the contrast in the acoustic impedance forms the syn-
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Figure 5. Cross-sections of Stybarrow Field. Seismic reflection data are shown as black wiggles. A positive amplitude is shaded black and represents a
reflection from an acoustically hard rock over a soft one. The colored background is a sparse spike inversion. Values are normalized and expressed in
relative percent reflectivity. Red is acoustically soft, blue is hard. (a) Old data. (b) New, higher bandwidth data.

Figure 6. Spectral signal-to-noise ratio determined by comparison to the
well log synthetic seismic. Signal is the peak amplitude of the main sand
reflector. Posted signal-to-noise ratios are the peak reflection amplitude of
the main sand divided by the noise level estimated by the stochastic
wavelet derivation (Gunning and Glinsky, 2006).

Figure 7. Mean models of N/G. Black wiggle shaded black is the seismic
reflection data. Red wiggle is the synthetic seismic of an average model (as
determined by the seismic chi squared value). (a) Initial model, before
inversion, using the old data. (b) Model after inversion using the old data.
Initial N/G was 85%, and initial gross thickness was 8 m. (c) Model after
inversion using the new data. Initial N/G was 50%, and initial gross
thickness was 22 m.

Figure 8. Summary of the estimates of net sand (a sand). Error bars
represent the standard deviation. Old, pessimistic case is using the old
data with an initial N/G of 85% and an initial gross thickness of 3 m.
Old, optimistic case is using the old data with an initial N/G of 85% and
an initial gross thickness of 16 m. Old, unbiased case is using the old data
with an initial N/G of 85% and an initial gross thickness of 8 m. New,
unbiased case is using the new data with an initial N/G of 50% and an
initial gross thickness of 22 m.



thetic seismic. The frequency of the wavelet was chosen to have
a tuning thickness of 14 m. The N/G standard deviation for
the reservoir layer was 20%. Uncertainties for the end mem-
ber properties were 87 m/s, 142 m/s, and 1.7% for the sand
compressional velocity, shear velocity, and porosity, respec-
tively; and 138 m/s, 70 m/s, and 0.035 gm/cc for the shale
compressional velocity, shear velocity, and density, respec-
tively. Time uncertainties of 10 ms were assumed for the two
seismic reflectors.

Two series of inversions were done: the first starting with
a model that always had 5 m more sand than the model used
to construct the seismic, the second starting with a model that
always had 5 m less sand. A noise level of about half the size
of the reflector was assumed. The gross thickness was iter-
ated for each series of inversions until the solution converged.
The result is shown in Figure 3. The posterior uncertainty in
the gross thickness was about three times the size of the ini-
tial bias. The solutions obviously converged to the unbiased
solution. It was noted that the convergence was quite rapid
(within one to two iterations) for a noise level merely 50% of
that displayed in Figure 2.

Field example. The methodology was then applied to the
Glenridding prospect, which lies beneath the Stybarrow Field,
influencing the business decision to drill. The Stybarrow Field
is in Production License WA-32-L, 135 km west of Onslow,
offshore Western Australia. The water depth at the location is
approximately 800 m. The field lies near the southern margin
of the Exmouth sub-basin within the larger Carnarvon Basin.
Oil is trapped in the Early Cretaceous, Berriasian age tur-

bidite and debris-flow sandstones deposited on a relatively
shallow passive margin slope. The Stybarrow structure com-
prises a NE–SW tilted fault block, forming a terrace within
the westward plunging Ningaloo Arch (Figure 4). The inter-
section of SW–NE and E–W normal faults establishes an elon-
gate, triangular trap forming structural closure to the
southwest. The structure dips from the SW to the NE at about
5°. Top, base, and bounding fault seals are provided by clay-
stones and siltstones of the overlying Muiron member of the
Barrow group and mudstones of the underlying Dupuy
Formation. More information about the field can be found in
Ementon et al. (2004).

A seismic dip cross-section through the middle of this
field is shown in Figure 5. Note the main sand that is currently
under development (the Macedon sandstone) and the loca-
tion of the four appraisal wells. The seismic data were recently
reprocessed in a way that increased the bandwidth (Figure 6).
This reprocessing highlighted a small, but possibly economic
“a sand” called the Glenridding prospect, that has not yet been
penetrated, approximately 50 m below the main Macedon sand
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Figure 9. Comparison of synthetic seismic of the ensemble of models to
the actual seismic (thick red line). (a) Initial model, before inversion,
using the old data. (b) Model after inversion using the old data. (c) Model
after inversion using the new data.

Figure 10. Ensemble of N/G models. (a) Initial model, before inversion,
using the old data. (b) Model after inversion using the old data. (c) Model
after inversion using the new data. N/G color scale bar is same as that for
Figure 7.

Figure 11. Update to mean net sand (a sand) by the inversion as a 
function of the initial gross sand thickness. Error bars represent the 
standard deviation. Initial N/G was 85%. Value indicated as unbiased is
the value of the prior gross sand thickness that results in no change of the
posterior mean net sand when compared to the prior mean value.

Figure 12. Update to N/G (a sand) by the inversion as a function of the
initial N/G. Error bars represent the standard deviation. Initial gross
thickness was 22 m. Value indicated as unbiased is the value of the prior
N/G that results in no change of the posterior mean N/G when compared
to the prior mean value.



(see Figure 5). Given the limited areal extent of this near-field
prospect, it would need to have a thickness of at least 4 m to
break even economically. In order to drill this target, it needs
to be proven that there is a 90% probability of having at least
4 m of sand.

To answer this question, a Bayesian model-based inver-
sion was done at the proposed well location shown in Figure
5. A model was constructed as shown in Figure 7. It has 12
layers, five of which are sands. It was built from an interpre-
tation of the top and base of the main (Macedon) sand, and
the top of the Glenridding “a sand.” Small uncertainty was
assumed for the position of these interpreted horizons (6 ms),
and a larger uncertainty for the other horizons (8 ms). The

uncertainty in the N/G was
assumed to be 30% with a initial
mean of 85% for all sands. More
details on how this inversion was
done can be found in Glinsky et
al. (2005).

The first inversion was done
using the old data. The seismic
specialists doing the inversion
decided to make a pessimistic
assumption for the initial thick-
ness of the “a sand”—they as-
sumed that it had zero thickness
and had the inversion prove oth-
erwise. Because the noise level
was about the size of the seismic
reflection, this was a reasonable
possibility. The resulting estimate
of the net sand (Figure 8) does
not meet the criteria for drilling
the well. The asset team mem-
bers challenged this result, sug-
gesting an optimistic assumption
that there is a sand of tuning
thickness unless proven other-
wise. This was also a reasonable
possibility. The resulting estimate,
also shown in Figure 8, does meet
the criteria for drilling the well.
Who was right? Finding the
answer to this question was the
inspiration for the discovery of
the iterative inversion. The unbi-
ased answer using the old and
the new data is shown in Figure
8. The unbiased solution using
the old data is obviously a com-
promise between the optimistic
and pessimistic solutions and
unfortunately does not meet the
criteria for drilling the well. For-
tunately, the resolution provided
by the new data increases the esti-
mate of the net sand enough to
meet the criteria for drilling the
well. Note that the new, unbiased
result is consistent with the old,
unbiased result (i.e., the new
mean lies within the uncertainty
of the old data), but it is not con-
sistent with the old, pessimistic
result.

Let us now examine the re-
sults in more detail so that we

can better understand them. Start with the mean models
shown in Figure 7. Both inversions using the old and the
new data increase the N/G and gross thickness of the main
sand. There is no change to the N/G of the “a sand” using
the old data and a very modest increase to the net sand. This
is because this sand is not resolved. The new data set is able
to resolve this sand. It dramatically increases the thickness,
but significantly decreases the N/G with an increase in the
net sand. It also increases the N/G of the main sand. The
match of the model synthetic seismic to the seismic is shown
in Figure 9. Note the better match using the new data due to
the better signal-to-noise ratio (SNR). A very instructive per-
spective on the inversion results is obtained by examining all
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Figure 13. Cumulative probability distributions of net sand. (a) Old seismic data. (b) New seismic data.

Figure 14. Probability distributions for N/G for the fixed point using the new seismic data. (a) Before 
inversion. (b) After inversion.

Figure 15. Wheels of fortune for the four possible models. (a) As indicated by the seismic data assuming
equal prior probabilities for the four models. (b) Prior probabilities as determined by the asset team 
considering the well information, geology and petroleum system. (c) As indicated by the seismic data 
assuming the asset team’s prior probabilities.



of the possible models that fit the data to within the SNR
(Figure 10). Notice the reduction in the uncertainty in the loca-
tion of the top and base of the main and “a” sands with the
new data. There is also less scatter in the N/G of both sands
using the new data.

The existence of the fixed point and the convergence can
be seen in Figures 11 and 12. They show the change in the net
sand and N/G, respectively, as the prior mean values are
changed. Note that, for values less than the fixed point (labeled
unbiased), the inversion increases the value. The greater the
distance from the fixed point the larger the change. The oppo-
site is true for values greater than the fixed point—the inver-
sion decreases the value.

The bottom line results are shown in Figure 13, where the
cumulative distribution functions are shown for the net sand
in the “a sand” using the old and the new data. Note that there
is only a 65% probability of having at least 4 m of sand using
the old data, and that probability is increased to 90% using
the new data.

Epilog to field example. The Glenridding well has recently
been drilled, subsequent to this analysis. Unfortunately, it
found an acoustically soft shale more than 13-m thick (the pre-
dicted gross thickness by the inversion was 19±7 m). The com-
pressional velocity of this shale was 300 m/s slower (two
standard deviations) than expected for a shale at this depth.
Encountering a soft shale was a concern before the well was
drilled since a soft shale was penetrated in an equivalent
stratigraphic interval in a well 30 km away from Stybarrow.

This is a surprise given the previously presented analysis
of this paper. A clue to what the problem is can be seen in
Figure 14. It shows the N/G distributions for the target sand
before and after the seismic inversion. Note that there was only
a 6% chance of no sand being present in the prior distribu-
tion. Although the probability was reduced 25% to 4.4% by
the seismic inversion, the seismic data were not definitively
eliminating this as a possibility. The small posterior probabil-
ity was mostly due to prior assumption on N/G.

The solution to this problem is to explicitly consider a brine
sand, regular shale, and soft shale as alternative models to the
oil sand. This was done by the asset team before the well was
drilled. The results are shown in Figure 15. Assuming equal
prior probabilities for the four cases, Figure 15a shows that
the seismic response is equally consistent with the brine sand,
oil sand, and soft shale models. It is less consistent with a reg-
ular shale. The prior probabilities of the asset team (consid-
ering the nearby well control, geology, and petroleum system)
are shown in Figure 15b. When these probabilities are updated
with the Bayesian boost from the observed seismic response,
the result is Figure 15c. Note that the most likely model is the

soft shale (39%) and it is 56% likely that some type of shale
would be found. The well result (finding no sand) was there-
fore a very likely occurrence.

The model selection was done by an extension of the
Bayesian model-based inversion program that outputs the
marginal model likelihood for the four inversions—one for
each model. More information on Bayesian model selection
can be found in Gilks et al. (1996) and Denison et al. (2002).

Conclusions. The iterative inversion is an important refine-
ment to Bayesian inversion when looking at marginal sands
where seismic reflection amplitude is near the noise level. For
high noise levels, the data are whispering to you through the
Bayesian inversion, but are being overwhelmed by the heavy-
handed sophomoric prior constraints imposed to eliminate
unreasonable models. The iteration amplifies the whisper
allowing convergence to the unbiased, predictive result free
of the influence of the initial constraints. Increasing the band-
width of the seismic data also is important if these sands are
poorly resolved. These methodologies changed a business
decision, but unfortunately the most likely failure case was
found when the well was drilled.
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