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Summary
Accurate reservoir simulation requires data-rich geomodels. In
this paper, geomodels integrate stochastic seismic inversion results
(for means and variances of packages of meter-scale beds), ge-
ologic modeling (for a framework and priors), rock physics (to
relate seismic to flow properties), and geostatistics (for spatially
correlated variability). These elements are combined in a Bayesian
framework. The proposed workflow produces models with plausi-
ble bedding geometries, where each geomodel agrees with seismic
data to the level consistent with the signal-to-noise ratio of the
inversion. An ensemble of subseismic models estimates the means
and variances of properties throughout the flow simulation grid.

Grid geometries with possible pinchouts can be simulated using
auxiliary variables in a Markov chain Monte Carlo (MCMC)
method. Efficient implementations of this method require a pos-
terior covariance matrix for layer thicknesses. Under assumptions
that are not too restrictive, the inverse of the posterior covariance
matrix can be approximated as a Toeplitz matrix, which makes the
MCMC calculations efficient. The proposed method is examined
using two-layer examples. Then, convergence is demonstrated
for a synthetic 3D, 10,000 trace, 10 layer cornerpoint model.
Performance is acceptable.

The Bayesian framework introduces plausible subseismic fea-
tures into flow models, whilst avoiding overconstraining to seismic
data, well data, or the conceptual geologic model. The methods
outlined in this paper for honoring probabilistic constraints on total
thickness are general, and need not be confined to thickness data
obtained from seismic inversion: Any spatially dense estimates
of total thickness and its variance can be used, or the truncated
geostatistical model could be used without any dense constraints.

Introduction
Problem Statement. Reservoir simulation models are constructed
from sparse well data and dense seismic data, using geologic
concepts to constrain stratigraphy and property variations. Reser-
voir models should integrate spare, precise well data and dense,
imprecise seismic data.

Because of the sparseness of well data, stochastically inverted
seismic data can improve estimates of reservoir geometry and
average properties. Although seismic data are densely distributed
compared to well data, they are uninformative about meter-scale
features. Beds thinner than about 1/8 to 1/4 the dominant seismic
wavelength cannot be resolved in seismic surveys (Dobrin and Savit
1988; Widess 1973). For depths of ≈3000 m, the maximum
frequency in the signal is typically about 40 Hz, and for average
velocities of ≈2,000 m/s, this translates to best resolutions of about
10 m. Besides the limited resolution, seismic-derived depths and
thicknesses are uncertain because of noise in the seismic data
and uncertainty in the rock physics models (Gunning and Glinsky
2004, 2006). This resolution limit and uncertainties associated
with seismic depth and thickness estimates have commonly limited
the use of seismic data to either inferring the external geometry
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or guiding modeling of plausible stratigraphic architectures of
reservoirs (Deutsch et al. 1996).

In contrast, well data reveal fine-scale features but cannot specify
interwell geometry. To build a consistent model, conceptual stack-
ing and facies models must be constrained by well and seismic data.
The resulting geomodels must be gridded for flow simulation using
methods that describe stratal architecture flexibly and efficiently.

Objective. Our objective is to use probabilistic depth and thickness
information from the layer-based seismic inversion code Delivery
(Gunning and Glinsky 2004) to inform a downscaling algorithm
operating on a cornerpoint grid. Delivery provides ensembles of
coarse-scale geomodels that contain thickness and other property
constraint information. These coarse-scale models must be down-
scaled to the flow model scale, honoring well data such as layer
thicknesses, porosity and permeability (Doyen et al. 1997; Behrens
et al. 1998). The downscaling must embrace conceptual geologic
models for stratigraphic frameworks, especially layer correlation
models between sparse conditioning points.This problem fits inside
a larger workflow, where this integration of the geomodel, well data,
and seismic data is referred to as “enforcement,” and the associated
algorithms comprise the software package known as Enforcer.

Gridding Considerations. Seismic constraints and priors are
modeled on the quasivertical block edges, analogous to seismic
traces. Simulation at the edges preserves geometric detail in
cornerpoint models. The stochastic inversion assumes no trace-to-
trace correlation, and the traces are not necessarily coincident with
cornerpoint edges in the flow model. Geologically plausible lateral
correlations are introduced, and seismic data are kriged to the (pos-
sibly nonvertical) cornerpoint edges using methods implemented in
DeliveryMassager; greater integration of the geomodel and a flow
simulation is a subject of ongoing work (Glinsky et al. 2005;
Gunning et al. 2007; Kalla et al. 2007b). Analogous seismic-
scale frameworks are used in Delivery (Gunning and Glinsky
2004) for constructing prior estimates of layer locations, and are
typically constructed using geomodeling software (Pet 2005),
although quasimechanistic depositional modeling (Merriam and
Davis 2001) or surface-oriented geostatistics algorithms (Pyrcz
2004) are possible alternatives.

Nature of the Seismic Constraints. The data used by the down-
scaling problem are typically realizations of the seismic inversion
coarse-scale model “massaged” to the edges of columns of the cor-
nerpoint grid. These inverted models contain the requisite coupling
between geometry and rock properties which seismic inversion
induces, plus the necessary spatial correlation behavior forced
by the massaging algorithm. These coarse-scale models provide
explicit constraints on the corresponding subgridded models, which
are nontrivial to respect using conventional geostatistical algorithms
for fine-scale heterogeneity.

A characteristic difficulty is that parameters of the fine-scale
model such as thickness may have one-sided or mixture distri-
butions (e.g., the mode of layer thickness may be zero in a
cornerpoint model). Because of constraints to be imposed, linear
estimation may prove inadequate. For example, if one wishes
to ensure consistency both in thickness and in average porosity
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Fig. 1—A trace is a line with composite properties informed by seismic data. It may be composed of many layers. Sublayers are
not modeled in this paper. This image is an interpreted outcrop data set (Willis and White 2000).

in a downscaling problem consisting only of vertical gridding
refinement, the following equations must be considered at column
of gridblock corners: ∑

K
k=1 hk = H, and ∑

K
k=1 hkφk = Φ̄H, where

K is the number of layers, k indicates a particular layer, φ is the
porosity, h is a layer thickness, H is the total thickness predicted by
seismic, and Φ̄ is the estimated average porosity at the trace scale. If
layer porosity and thickness must be jointly estimated, the problem
is nonlinear.

In summary, seismic downscaling to well and stratigraphic data
on an arbitrary cornerpoint grid is a difficult problem, chiefly on
account of the constraints, but also because of nonlinearities.

Use of Terms. The following conventions are used:
• Layers are generally not resolved by seismic data, but can be

identified in wells. This terminology is illustrated in Fig. 1 (Willis
and White 2000). Sublayers might exist if some geomodel layers
are not resolved in the cornerpoint grid layers. In this paper, well
data is used only at the layer scale—sublayer log and core data must
be upscaled.

• Traces are a segment of reservoir whose average properties
are constrained by seismic, and will generally contain many layers.
Traces correspond to the edges of the cornerpoint gridblocks [viz.,
COORD records, (Ecl 2004); (Ponting 1989)]. Conditioning data
are a type of trace; order, properties, and thickness are specified at
conditioning traces.

• A path is a sequence in which traces (or layers, or blocks) are
visited. We use a quasirandom multigrid path.

• Multigrid paths are paths that preferentially visit widely
spaced points early.

• The resolution matrix is the inverse of the covariance matrix,
and closely related to the Hessian in an optimization problem.

Problem Formulation
Our approach is to combine diverse data elements in prior and
likelihood expressions to obtain a posterior probability. The overall
posterior distribution is approximated by the posterior obtained
by a multigrid sequential simulation passing over all columns or
column–blocks of the cornerpoint grid. Each column of blocks
is simulated by sampling from a Bayesian posterior distribution
conditional on hard data and previously visited columns by means
of the priors, and collocated coarse-scale constraints by means of
the likelihood. The prior distribution for each column is determined
by solving an ordinary kriging system (Goovaerts 1997) using
observations and previously simulated values. The seismic data
are incorporated by means of a constraint on the sum of the layer
thicknesses, which comes from a stochastic seismic inversion. In
the proposed approach, layer thicknesses are modeled as truncated

Gaussian processes to allow for pinchouts; this model complicates
imposition of the seismic sum constraint (Sampling Approach,
later). The prior data and thickness constraints are combined in
a Bayesian posterior form. Finally, the posterior is sampled using
MCMC methods with auxiliary variables (Gelman et al. 2003).

An efficient approximation to the posterior covariance matrix is
crucial to the success of this Bayesian approach. In this study, effi-
ciencies are gained by assumptions regarding particular form of the
covariance, which yield a computationally tractable matrix (see the
Estimating the Prior subsection). This posterior covariance matrix
is required by the sequential simulation algorithm, and encapsulates
the compromise between prior information from kriging and total
thickness constraints derived from seismic information.

For simplicity, we consider systems with a single thickness
constraint. More general constraints are addressed in the Discussion
section and other studies (Kalla et al. 2007b). Numerical methods
and sampling methods are also discussed in later sections.

The Truncated Proxy for Thickness. A proxy t for thickness
h is used. The untruncated proxy t is kriged to obtain prior
distributions because kriging assumes variables are continous but
actual thickness h is non-negative. The proxy t may take on negative
values, whereas h is truncated at zero. The probability of tk ≤ 0
corresponds to the probability that layer k is absent, locally:

P(hk = 0) =
Z 0

−∞

dP(tk). . . . . . . . . . . . . . . . . . . . . . . . . . (1)

Algorithm Outline. Before discussing details, the algorithm
framework is presented (Fig. 2). First, the untruncated Gaussian
surrogate for all conditioning data with h = 0 must be simulated.
Then, a multigrid random path for a sequential simulation is
generated. At each point on the path, the prior is estimated by
kriging and the likelihood is used to update thicknesses at the trace
by seismic data. To treat the possibility of zero thicknesses (or
pinchouts), auxillary variables are used, followed by a Metropolis-
Hastings step to propose a new thickness vector. The chain
is iterated to convergence, a sample vector t is drawn, and the
simulation then moves to the next trace in the path. Multiple paths
can be used to generate multiple chains, in the same way sequential
Gaussian simulations generate multiple realizations (Deutsch and
Journel 1998).

Estimating the Prior. This step in the algorithm supplies prior
means t̄ and variances σ2

tk for all layers on a given trace. A few
assumptions can simplify the kriging solution, and greatly improve
efficiency (see the Numerical Considerations section).

• For many block shapes and grid spacings, traces can be
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Fig. 2—Flow chart for sequential simulation using MCMC.

approximated as vertical when computing the kriging covariance
matrix (i.e., small lateral trace displacement compared to trace
spacing). Then the areal separation between the visited trace and
each of its neighbors is constant for all layers and all trace-neighbor
pairs.

• If in addition the covariance models are the same for all
layers, then the covariance matrices will be the same on a layer-
by-layer basis as well.

• Layer thicknesses may be a priori uncorrelated vertically
at each trace. This may be reasonable, as the lateral thickness
variations are likely more informative than the thicknesses of
the layers above and below. This assumption seems particularly
appropriate for turbidite systems, in which meter-scale beds may
correspond to individual depositional events. Bed thicknesses then
correlate strongly only within beds, with between-bed correlations
being weak or even negative if compensatory deposition or scouring
were occurring.

If all of these assumptions are reasonable, then the priors for each
layer can be computed separately; the kriging matrices are identical
for all layers, and therefore only one kriging system needs to be
solved at each trace; and the prior variances in each column are
then uniform. The prior means vary layer by layer. The tracewise-
constant prior variance allows more efficient solution methods (see
the Numerical Considerations section). These assumptions need not
be imposed: this would make the kriging system(s) more expensive
to solve, and the approximation to the posterior covariance will be
more expensive to compute.

The neighbor list is extracted from the list of conditioning
data and previously simulated points using a k-d tree (Bentley
1975) with specifications of desired points per quadrant. This
search strategy is more efficient than most alternatives, especially
on irregular grids. Also, assuming only two-dimensional layer
thickness correlation implies that a two-dimensional search suffices,
further improving search efficiency.

Cokriging or collocated kriging could be used to get prior co-
variances (Goovaerts 1997). Such a result could be integrated well
with the seismic data, which provide local correlated estimates of
trace-scale properties (Gunning and Glinsky 2004). Alternatively,
these essential rock physics correlations can be preserved using a
cascading workflow originating from seismic inversions (Kalla et al.
2007b).

If vertical correlations are included, separate neighbor lists may
be required for each of the K` layers at the trace, or a single list
could be used for all layers. While the single list might require

solving a larger kriging system, it would only require solving one
kriging system for all K layers.

The Posterior Resolution Matrix. The seismic data are combined
with the prior to obtain posterior probability. The seismic data
are incorporated as a constraint on the total thickness, H̄, with
resolution 1

σ2
H

obtained from a stochastic inversion using Delivery
(Gunning and Glinsky 2004).

The posterior probability for any thickness vector t is, from
Bayes’ rule,

π(t|H,d`k) =
p(H|t,d`k) p(t|d`k)

p(H|d`k)
, . . . . . . . . . . . . . . . . (2)

where d`k is a vector of the all neighboring conditioning or pre-
viously simulated traces in layer k in the neighborhood of trace
`. The product of the likelihood and prior are proportional to the
posterior, without normalizing term in the denominator, which does
not depend on t. That is,

π(t|H,d`k) ∝ p(H|t,d`k) p(t|d`k). . . . . . . . . . . . . . . . . . (3)

We assume that departures from the prior (t̄k) and updating (H̄) data
means are normally distributed with standard deviations σtk and σH ,
respectively. The assumptions apply to departures, not values, and
so the resulting posterior probabilities are not assumed to be normal,
as will be demonstrated in later examples. The multivariate prior
distribution of t is

p(t|d`k) =
1

(2π)
K
2 |Cp|

1
2

exp
[
−1

2
(t− t̄)T C−1

p (t− t̄)
]
, . (4)

where Cp is the prior or kriging covariance matrix, which is of rank
K with the kriging variances σ2

tk along the diagonal. The number of
active layers (with tk > 0) is κ.

Similarly, we can express the updating constraint on H as a
Gaussian likelihood,

p(H|t,d`k) =
1√

2πσH
exp
[
− (H− H̄)2

2σ2
H

]
, . . . . . . . . . . (5)

where

H = tT T, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)

and

Tk =
{

0 if tk < 0
1 otherwise

. . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)

The conditioning on d`k in Eq. 5 is indirect, due to the conditioning
of t on d`k. The product of Eqs. 4 and 5 is the proportional to the
posterior, Eq. 3. This product can be converted to a quadratic form
by taking the logarithm, giving

−2ln [π(t|H,d`k)] = ln
[
(2π)K |Cp|

]
+ ln

(
2πσ

2
H

)
+ (8)

(t− t̄)T C−1
p (t− t̄)+

(tT T− H̄)2

σ2
H

.

We seek a stationary point in the posterior probability by setting the
gradient with respect to t of Eq. 8 to zero, viz.,

C−1
p (t− t̄)+

(TTTt− H̄)
σ2

H
= 0.

The Hessian, G of Eq. 8 is the desired resolution matrix (which
is the inverse of the posterior covariance):

G = C−1
p +TTT /σ

2
H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9)
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If the prior covariance matrix is diagonal, C−1
p and G are easy to

compute. For Tk = 1,∀k, the Hessian has the form

G =


1

σ2
t1

+ 1
σ2

H

1
σ2

H
· · · 1

σ2
H

1
σ2

H

1
σ2

t2
+ 1

σ2
H

· · · 1
σ2

H
...

. . .
. . .

...
1

σ2
H

1
σ2

H
· · · 1

σ2
tK

+ 1
σ2

H

 . . . (10)

If the prior variances σ2
tk are all equal (see the Problem Formulation

section), G is Toeplitz (Golub and van Loan 1996), and in fact a
particularly simple form, with all super- and subdiagonals equal.
Note that the Hessian is constant except for the dependence of T on
t; this is a lurking nonlinearity.

Prior and Likelihood Distributions in 2D
Important features of higher-dimensional cases are easily visualized
for a system with two layers (Fig. 3). The dashed line in Fig. 3 is the
thickness sum constraint, and lines parallel to it are isoprobability
contours. In three dimensions, the dashed line in Fig. 3 corresponds
to a triangle with vertices on each t-axis at H̄; increasing H̄ shifts
the high-likelihood region away from the origin, but with no change
in slope. Tighter seismic constraints will narrow the width of the
high-likelihood region.

The assumption of equal prior variances implies the prior has
the circular shape shown in Fig. 3; it would be ellipsoidal if prior
variance differed by layer, and it would be an inclined ellipsoid if
the layer thicknesses were correlated. Such priors could be sampled
using methods discussed in this paper, but the resolution matrices
would be non-Toeplitz and the algorithms would be slower.

In this example, the prior mean thicknesses (4m and 1m for the
two layers) sum to greater than the mean trace thicknesses (4m),
so the prior center of mass [circles in Fig. 3; Eq. 4] lies above
the maximum likelihood line [dashed line in Fig. 3; Eq. 5, for
tk > 0,∀k ∈ {1,2}]. Because t̄2 is small compared to H̄, there
is substantial prior (and posterior) probability that t2 is negative,
yielding many realizations with h2 = 0.

If no layer kriging data were used and the seismic data were
considered exact, any layer thickness pair (t1, t2) along the dashed
line with 45 degree slope could be used. Conversely, in a sequential
simulation not conditioned to seismic, the layer thicknesses would
simply be drawn from the prior (Fig. 3).

Sampling problems are caused by the nonlinearity [Eqs. (6,
7)] apparent as slope discontinuities in the likelihood where the
axes intersect the contours of the likelihood surface (Fig. 3).
This nonlinearity may dominate sampling where the prior admits
significant probability of one or more thicknesses being zero (as is
the case for layer 2 in Fig. 3). In higher dimensions, many layers
may be pinched out at any given trace, and a method to move around
these corners while sampling is needed (see the Auxiliary Variables
to Treat Pinchouts subsection).

Sampling Approach
Because the log-posterior surface is quadratic with constraints
(Eq. 9), the most likely a posteriori thickness vector could be
found by constrained quadratic programming (Nocedal and Wright
1999). However, our goal is simulation, not maximum a posteriori
estimation, so we sample from the posterior. We use an MCMC
method (Fig. 2).

In this section, we focus on simulation at a given trace `. The
overall simulation proceeds by visiting all ` that are not in the
conditioning data set by a specific, random, multigrid path.

Observed Thicknesses of Zero. Some layers may be absent at
conditioning points, hk = 0. For these points, we only know
that tk ≤ 0 at these points, but require a particular value of tk
to use in estimating means at the traces to be simulated. One
could simply draw random numbers in the range [0,P(hk = 0)]
and apply an inverse normal transformation, but this decorrelates
the variables. Instead, we precondition these data using a Gibbs
sampler to preserve the correlation (see Appendix).

Auxiliary Variables to Treat Pinchouts. The posterior distribution
has marked slope discontinuities at the interfaces in parameter
space where layers pinch out (i.e., the hyperplanes tk = 0; Fig.
3). Standard MCMC methods based on small jumping proposals
will diffuse around such distributions very slowly. It has been
shown that introducing auxiliary variables u can promote mixing,
or alteration between states, in difficult MCMC problems with
related “configurational stiffness” characteristics (Higdon 1998).
Auxiliary variable methods use an augmented posterior probability
space:

π(u, t) = π(t)π(u|t), . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11)

where the augmented binary variables u (uk ∈ {0,1} ∀k ∈ {1 . . .K})
are chosen to align samples in the directions of maximum posterior
considering the bends in the likelihood. When the sampling kernel
in the MCMC algorithm is near the slope discontinuities, these
auxiliary variables can change from zero and one (or vice versa),
and allow the sampling direction to change.

The term π(u|t)
[
= ∏

K
k=1 π(uk|tk)

]
is a conditional probability for

the auxiliary variables, which may be constructed in any helpful
way. In our case, we construct the conditional to help detect
the kinks in the posterior that occur when layers pinch out. One
possible choice of a symmetric form is

π(uk = 1|tk) =

{
1− 1

2+tk/σπk
if tk ≥ 0

1
2−tk/σπk

otherwise
, . . . . . . . . . (12)

where σπk is a univariate approximation to the multivariate posterior
covariance,

1
σ2

πk
=

1
σ2

tk
+

κ

σ2
H

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (13)

That is, σπk ≈∑
K
j=1 Gk j, (Eq. 10). κ is the current number of active

layers; κ = ∑
K
k=1 Tk ≤ K.
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Sampling from the augmented posterior distribution is performed
by alternating Gibbs samples for the auxiliary variables with the
Metropolis-Hastings samples for the thicknesses tk. The Gibbs
sampling scans over the layers. At each layer, a uniform [0,1]
random number is drawn. If the random number is less than
π(uk = 1|tk), uk is assigned 0. When the uk for all K layers
have been simulated, we construct a resolution matrix (for step
size and direction dependent on u) from which jumping proposals
are formed, which are well tuned for the current configuration of
the system. The auxiliary variables create an adaptively varying
proposal kernel that does not break reversibility.

The Gibbs sample gives a list of likely active layers at the current
iterate in u.

Metropolis-Hastings Step. The new kernel obtained from the
Gibbs step (previous section) is used to sample a new thickness
vector t using a Metropolis-Hastings step. Let the number of
active layers be κ, κ ≤ K. At each trace, a resolution matrix
of rank K is constructed and its Cholesky factors are computed.
The resolution matrix Gκ = C−1

p + uuT /σ2
H is used to make the

MCMC jumping proposal (Eq. 14). The appropriate resolution
and inverse matrices are computationally inexpensive for the simple
Toeplitz resolution matrix used in the proposed approach (see
the Numerical Considerations section). The Hessian G and the
posterior covariance Cπ = G−1 are of rank K, but matrix inverse
used in sampling is of lower rank κ (Numerical Considerations,
later). The Cholesky factor LCπ of the covariance matrix (the
Cholesky factorization is Cπ = LCπLT

Cπ
) is multiplied into a κ-long

vector of random normal variables r∼ [N(0,1)] to produce a vector
∆t of proposed changes in t,

∆t = sLCπr, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (14)

so that ∆t ∼ N(0,s2G−1
κ ), where s is a scalar chosen for sampling

efficiency. Typically s2 = 5.76/κ for large κ (Gelman et al. 2003).
This vector is rank κ, and the changes must be sorted back into t by
referencing u. We can compute the likelihood at the new point t′ =
t+∆t, using Eq. 5. The Metropolis-Hastings transition probability
is then (Gelman et al. 2003)

α = min

(
1,

π(t′|H,d`k)∏
K
k=1 π(uk|t ′k)

π(t|H,d`k)∏
K
k=1 π(uk|tk)

)
. . . . . . . . . . (15)

Eq. 15 is similar to the standard Metropolis-Hastings ratio, but has
been modified to include the auxiliary variables so that reversibility
is maintained. The proposed transition ∆t is then accepted with
probability α, and the algorithm proceeds to the next Gibbs sample
for the auxiliary variables.

Numerical Considerations
The Toeplitz form of the posterior resolution matrix and subsidiary
assumptions simplify computations (see the Estimating the Prior
subsection). Because of these simplifications, only two matrix
solutions are required per trace: a Cholesky factorization of the
kriging matrix (which is dense and not Toeplitz, with rank equal
to the number of neighbors used, N`), and the factorization of
the inverse of the Toeplitz resolution matrix (rank K` and very
inexpensive). If the Toeplitz-yielding assumptions were not made,
K` rank-∑K`

k=1 N`k kriging systems are required at each trace `. Even
more prohibitive, the posterior resolution matrix G would have to
be refactored every time any tk flips from a positive to nonpositive
state. Because this occurs deep within the sampling method (see the
Sampling Approach section), this would result in a remarkable loss
in efficiency.

To carry out the simulation, we need the Cholesky factor LCπ

of the posterior covariance matrix, Cπ = G−1. With LCπ, we
can generate correlated normal deviates, ∆t, from uncorrelated
random normal input vectors, r ∼ N(0,1), ∆t = LCπr (see the
Metropolis-Hastings Step subsection) (Goovaerts 1997). For the
special Toeplitz matrices, the factor LCπ can be computed from the
Cholesky factor of the resolution matrix G. That is, factor G to get

LG, invert LG by backsubstitution to get L−1
G (inexpensive because

the matrix is triangular), and take the persymmetric transpose
(Golub and van Loan 1996) of L−1

G . This is the Cholesky factor
of Cπ, LCπ.

The rank “downdate” from K to κ < K is the lower rank-κ
triangle of LCπ. The matrix rank changes whenever the auxiliary
variable transitions between zero and nonzero. Because of the
Toeplitz form, the required factored correlation matrices LCπκ,
regardless of the number of active layers κ (or rank), can be
computed from a single factoring of the rank-K covariance and
inverse to get LCπ and taking the appropriate rank-κ submatrix.

In combination, the efficient factorization method for the pos-
terior rank-K covariance matrix and determination of LCπκ for
all possible pinchout combinations makes this algorithm efficient.
Precise work estimates for these matrix calculations have not been
done, but an upper bound is the work done for a general Toeplitz
matrix (Golub and van Loan 1996), inverting the resolution matrix
and factoring that inverse to get LCπ. For that less efficient
approach, the inverse of the Toeplitz resolution matrix requires
W ∝ K3 floating operations (flops), and further work W ∝ K4 flops
is required for the factoring. In comparison, the proposed method
is at worst W ∝ K3 for the inverse and all factors, a full order of
improvement (see the Performance subsection).

Simulations of Two-Layer Systems
Several two-layer simulations illustrate the behavior of the data
integration algorithm. Different combinations of prior and updating
data variance are considered, along with perfectly consistent vs.
slightly contradictory prior means and constraints. Results are
summarized in Table 1.

Tight Sum Constraint. This case assumes the sum of the layer
prior means is equal to the trace mean, but the layer thicknesses
are poorly resolved (Fig. 4). Because the means are consistent and
the constraint variance is relatively small, the simulations tightly
cluster around the constraint line, and the posterior means of t
are near their prior means, although the correlation induced by the
constraint is marked (covariance column, Table 1). Moreover, many
realizations have t near (4,0)T (which is very unlikely in the prior)
because of the relatively tight seismic constraint (σt/σH = 10).
The bend in the posterior caused by the pinchout is clearly seen
below t2 = 0 (Fig. 4a). The posterior layer variances are reduced
because of the added data in the constraint (eigenvalues, Table
1). The axial (maximum) standard deviation is the same for the
posterior as for the (isotropic) prior, but the transverse standard
deviation is significantly reduced. The univariate histograms of t
are slightly non-Gaussian, and truncation makes the histograms of
h depart even more. The strict seismic constraint has transformed
the uncorrelated prior into a posterior in which the thicknesses
are strongly negatively correlated, a natural outcome of a sum
constraint.

Loose Constraint and Prior. As for the previous case, the
prior means are taken to be consistent with the seismic constraint.
However, the variances of both prior and constraint are higher for
this case. The data are therefore more dispersed, and it is more
likely that layer 2 is assigned a zero thickness (Fig. 5). As before,
although t appears nearly Gaussian in the univariate histograms, h
will be truncated to nonnegative values and is thus non-Gaussian,
and the bend in the posterior at t2 = 0 is observed.

Sum of Prior Means less than Constraint. A mismatch between
the prior layer means and the thickness constraint shifts the axis
of the cloud of simulations points above or below the constraint
line (Fig. 6). In this case, both layer thicknesses are increased
from their priors to better match the seismic constraint. For
the moderate standard deviation and prior means much greater
than zero, few truncations occur and the posteriors are nearly
Gaussian. For this nearly multi-Gaussian case, the constraint has
transformed the isotropic, uncorrelated prior thicknesses (Fig. 3)
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TABLE 1—PARAMETERS AND RESULTS FOR 2-LAYER SIMULATION

Prior Constraint Posterior

Case t̄1 t̄2 σt H̄ σH t̄1 t̄2 Covariance of t σt
∗ H̄ σH

Tight 3.0 1.0 1.0 4.0 0.1 2.86 1.11
0.46 −0.50

−0.50 0.59
1.01
0.14 4.00 0.10

Loose 3.0 1.0 1.0 4.0 0.5 2.97 0.97
0.53 −0.46

−0.46 0.72
1.03
0.44 4.00 0.49

TT t < H̄ 3.0 1.0 0.5 6.0 0.5 3.65 1.66
0.16 −0.08

−0.08 0.16
0.49
0.28 5.31 0.41

∗These are the square roots of the largest and smallest eigenvalues, respectively, of the posterior covariance matrix
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Fig. 4—Simulation results for a two-layer case with inaccurate layer thickness but total thickness (h1 + h2) tightly constrained.
H̄ = 4, t̄ = (3,1)T , σH = 0.1, and σt = 1; consistent units.

to a strongly correlated, more compact posterior. Because the prior
and constraint variances are equal, the mean of the scatter cloud
is shifted roughly one-half the distance from the prior toward the
constraint, as would be expected (Table 1) (Gelman et al. 2003).

Convergence. MCMC methods may converge too slowly to be
practical, or may have multiple modes such that multiple chains
or methods to switch between modes are needed. In numerical
experiments undertaken so far, these potential problems do not
appear to be too severe in this algorithm.

Convergence is critiqued by examining posterior distribution
statistics over many iterations (Gelman et al. 2003). For a variety
of cases examined, the means converge in no more than ≈ 1,000
iterations, and the variances stabilize in no more than ≈ 2,500
iterations. That is, some 2,500 iterations are needed for the chain
to begin sampling the posterior reliably; this is referred to as the
“burn–in;” samples prior to burn in are discarded before the chain
is used to simulate the posterior. This number of iterations, while
large, is not prohibitive if the proposal method is computationally
inexpensive (see the Numerical Considerations section) and the
acceptance rate is not too small. For a realistic 3D synthetic
problem, the proposed method attains a sampling rate of almost
200,000 iterations per second and an acceptance rate averaging
≈ 0.4, which makes such long burn-in requirements manageable
(see the Synthetic 3D Cases section).

Chains started in widely dispersed parts of t-space converge to
the same posterior (Fig. 7). This was expected, based on the
relatively simple form of the posterior resolution matrix, G. The
early behavior depends on the starting point (Fig. 7a): chains
that move in from the flanks of the constraint (transverse paths)
take large, efficient steps; those moving along the axis zig-zag and
advance more slowly. The latter is the classic behavior of movement

along a trough in a minimization problem where the eigenvalues of
the Hessian differ markedly (Table 1). After many iterations, all
chains are sampling the same region (Fig. 7b), and the post-burn-in
chains are statistically indistinguishable.

The simple 2D examples indicate the algorithm is reproducing
expected results in limiting cases.

Synthetic 3D Cases
A synthetic 3D data set is used to test and illustrate the MCMC
simulation method. Prior (range and sill of semivariogram, R)
and updating data (trends in H̄ and σH ) parameters are varied to
illustrate behavior, and algorithm performance is discussed.

For all cases, x to y extent is 1000 × 1000 m, the number
of grids in those directions are 100 × 100 respectively, and the
number of layers is 10. The framework for the reference model
was created by randomly placing objects with scaled bi-Gaussian
thickness variations in x and y; for the 1 km areal grid, an
isotropic standard deviation, σ = 500 m, was used to compute

layer thickness with h(x,y)= hmax exp
[

(x−x̄)2+(y−ȳ)2

σ2

]
. This object-

based method with Gaussian thickness variations is not the same as
a Gaussian covariance process. The object models are used only
to create conditioning data. Twenty-five traces were used in cases
discussed in this section; the algorithm has also been used with no
conditioning traces and with up to 200 conditioning traces.

Illustrative Cases. Four different cases show features of the data
integration method (Fig. 8). With short ranges, termination is
more common, although the average layer thickness is similar to
the longer range (Figs. 8a and 8b). There is little noise, unlike what
is commonly observed in Gaussian processes; the layer thicknesses
vary smoothly and plausibly, and near-zero thicknesses do not
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Fig. 5—Simulation results for a two-layer case with inaccurate layer and total thicknesses (h1 +h2). H̄ = 4, t̄ = (3,1)T , σH = 0.5,
and σt = 1; consistent units.

appear in isolated areas; this results from the truncation rules and
the smooth Gaussian variogram. The pinchout pattern is clearer in
the longer-range case (Fig. 8b). In particular on the first cross-
section in the left, the light layer near the base and the dark layer
in the middle appear to taper and pinch out smoothly; this behavior
is more characteristic of object models than most covariance-based
simulations.

Seismic data may imply a thickness trend (Fig. 8c). The
seismic trend will be reproduced in the simulation, with a precision
conditioned on the inferred seismic thickness variance, σH . If
the seismic variance is higher for smaller mean thickness, low
thicknesses fluctuate more, as can be seen by comparing the left
front edges of Figs. 8c and 8d. For the low variance case (Fig.
8c), the edge panel is of nearly uniform thickness; the nonuniform
variance case (Fig. 8d) has much greater fluctuation on the left edge.

Although based on a synthetic case, these results indicate that
the proposed method can reproduce complex pinchout layering
and plausible seismic trends. The number of pinchouts can be
quite large in complex cornerpoint grids; 30,608 of 100,000 trace
segment are zero-thickness in one of the example cases (Fig.
8c). The complex pinchout structure is obtained even though the
conditioning data are not especially dense (Fig. 8d).

Performance. For adequate performance, an MCMC simulation
should converge to its target distribution in as few steps as possible.
A large step size helps explore the posterior in few steps. On
the other hand, large steps are more likely to be rejected, wasting
computations on a sample that is not retained. The step size
is usually adjusted indirectly, by scaling the posterior covariance
(which is used to generate steps; see the Metropolis-Hastings Step
subsection). For the system examined, the covariance is not scaled;
this gives a step size of the order of the square root of the smallest
diagonal element in the posterior covariance matrix. In high-
dimensional problems, it may be more appropriate to use C̃π =
5.76

K Cπ to ensure adequate acceptance rates (Gelman et al. 2003).
Although the unscaled covariance yields larger steps for K = 10, the
test cases had acceptance rates of 30 to 40 percent. This step size
and acceptance rate appears to yield good convergence, thorough
exploration of the posterior, and smooth posterior samples (where
they should be smooth: e.g., if the prior implies truncations are very
unlikely or almost certain). The best choice of scaling is problem-
dependent.

The computational cost of a single simulation (for the case of

TABLE 2—PERFORMANCE SUMMARY FOR THE 3D EXAMPLE (ONE
COMPLETE SIMULATION)∗

Process Work in Seconds∗∗

Kriging work 5.95
Toeplitz solver work 0.22
Total overhead all traces 6.17
Samples, 5000 per trace, all traces 299.20
Cost of example simulation, excluding io 305.37
∗ model size, 100×100×10; 5,000 samples per trace
∗∗ using a 2 GHz Pentium-M processor with 1 GB of RAM

Fig. 8a) is examined component-by-component in Table 2. Several
features are striking. First, 97.98 percent of the work is done
in the deepest part of the sampling loop, which requires random
number draws, extractions of submatrices, and multiplication of
random normal vectors by lower triangular matrices (the Cholesky
factor of the posterior covariance matrix, LCπκ). None of these
operations is particularly expensive, but a total of 5×107 iterations
were performed for this case (≈ 164,000 samples accepted per
second). Because the kriging system is solved only once per trace—
and is 2D, with an efficient k-d neighbor search—the associated
work is small, about 1.95 percent. The Toeplitz manipulations are
practically cost-free, only about 0.07 percent of the total work.
Finally, the overall cost of about 5 minutes on a laptop computer
(for 105 unknowns) does not seem prohibitive.

Because it is a tracewise sequential algorithm, this MCMC
method scales linearly in the number of block edges, or traces.
Thus, a model with 106 traces and 10 layers should require
approximately 8.5 hrs if attempted on a single Pentium-M processor
with adequate memory: not too alarming, for a model with 107

unknowns. The Toeplitz covariance and inversion work scales
approximately with the third power of layer count (see the Numer-
ical Considerations section), and linearly for generating samples at
traces. However, Toeplitz solver work takes less than 1 percent of
the computing time (Table 2). That is, although the cubic scaling is
unfavorable for large K, the multiplier for the Toeplitz work is small
and this component does not control the total work required. This
is because proposing samples consumes most of the work, and each
trace has thousands of proposals and requires only one K3 Toeplitz
solve. The total, sampling-dominated work scales with K rather
than K3. Therefore, a model with 20 layers takes approximately
twice as long as the 10-layer model used in the illustrations.
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Fig. 6—Simulation results for a two-layer case with prior sum less than the sum constraint. H̄ = 6, t̄ = (3,1)T , σH = 0.5, and
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Discussion
Sequential Methods. A difficult aspect of these nonlinear down-
scaling problems is discerning whether the overall system posterior
distribution can be safely factored into the product of conditional
distributions implied by the sequential pass over the columns of
gridblocks. This factorization requires computing both analyti-
cal marginal distributions (integrating over unvisited sites), and
conditional distributions dependent only on visited sites. This
requirement is usually met only by exponential family distribution
functions. The posterior in our problem does not strictly satisfy
these requirements. Nonetheless, the approximations we make can
doubtless be improved by blockwise sequential schemes, though
a block approach increases both the dimensionality of the MCMC
sampling subproblem and the configurational complexity of han-
dling more pinchout transitions.

Notwithstanding these concerns, we have demonstrated that
using auxiliary variables greatly facilitates effective sampling of
a complicated high-dimensional posterior distribution that arises
in the downscaling problem we address. Similar difficulties will
arise in any more or less rigorous recasting of the problem, so the
technique we demonstrate should be widely applicable. Possible
extensions are use of mixture-independence samplers (Gilks et al.
1996) that take advantage of the piecewise quadratic form of the
log-posterior function, and generalization to multiple correlated
variables in the model and associated likelihood.

Related Methods. As discussed in Simulation of Two-Layer Sys-
tems, if no layers are likely to be absent, the posterior distribution
remains multi-Gaussian, and simulation and estimation methods are
linear. In this case, the proposed method is a variant of collocated
cokriging, where the collocated data are a sum rather than a
constraint on a single thickness (Goovaerts 1997). The proposed
methods are needed only when there is substantial likelihood of
layers terminating laterally, in which case untruncated Gaussian
models will fail.

Previous work on reservoir characterization with truncated Gaus-
sian fields has focused on categorical simulations (Xu and Journel
1993; Matheron et al. 1987). In contrast, the proposed method
combines aspects of categorical and continuous simulations. The
condition tk ≤ 0 on the thickness proxy is equivalent to setting an
indicator for layer occurrence to zero. However, in the categorical
case all tk > 0 would be identical (for a binary case), whereas we
use values tk > 0 to model the continuous variable hk. This hybrid

approach could be applied without constraints, yielding sequen-
tial truncated Gaussian simulations of thickness; this corresponds
closely to the cases with high σH presented above, and the resulting
images would be similar.

Cornerpoint Grids. The MCMC simulation is over the block
edges, or traces. This is different from many geostatistical mod-
eling approaches, which are commonly block-centered. However,
geometry—especially pinchouts or discontinuities at faults—can
be modeled more accurately using cornerpoints. The porosity
and other rock properties should be simulated or estimated at
the same point, because these properties are generally correlated
through the rock physics model and seismic response. Even for
cornerpoint grids, reservoir simulators use block centered values
for rock properties such as porosity. The trace properties must
be averaged appropriately to the block center. A simple mean is
probably adequate for thickness and porosity-thickness. However,
the permeability must be upscaled more carefully, especially for
nonrectangular blocks; a good method might be to integrate the
Jacobian over the half-block domains (Peaceman 1996). Even for
uniform permeability, the Jacobian integration correctly provides
face- and direction-dependent transmissibilities for a nonrectangu-
lar grid. The method could also be used to perform approximate
upscaling for sublayer heterogeneities and compute more accurate
pore and bulk volumes.

Extensions. Three extensions are discussed in other, related work.
First, several distinct facies are subjected to separate seismic thick-
ness constraints (Kalla et al. 2007b). This permits, for example,
conditioning on net and gross thickness separately. Second, product
constraints, of the form ∑

K
k=1 hkφk = Φ̄H, can be imposed; these

constraints are nonlinear (Kalla et al. 2007b). More general scale
linkages have been implemented using Markov random fields (Lee
et al. 2002). Third, block methods or other approaches were
considered by Kalla et al. (2007a) to address difficulties with the
computation of marginal distributions in non-Gaussian sequential
simulation (see the Sequential Methods subsection).

Conclusions
Stochastic seismic inversion computations can be integrated with a
truncated Gaussian geostatistical model for layer thicknesses using
an MCMC method. Truncation makes the problem nonlinear,
which is ameliorated by the introduction of auxiliary variables and
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a mixed Gibbs-Metropolis-Hastings sampling procedure. Under
reasonable assumptions, the posterior resolution matrix is a special
form of Toeplitz matrix; the special form can be exploited to make
MCMC sample proposals more efficient to evaluate. Proposal
efficiency is critical to the usefulness of the method, because many
thousands of proposals must be evaluated at each trace for a single
cornerpoint grid realization. The ability of the method to reproduce
limiting case results and correctly model truncations is verified
by examining algorithm behavior in two dimensions. A synthetic
3D case demonstrates that the procedure is acceptably fast. Al-
though many issues remain—especially implementation of more
complex constraints and integration with fine-scale geomodels—
the proposed method appears to offer a foundation for further
development.
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Nomenclature
Cp = prior covariance matrix based on kriging, m2

Cπ = posterior covariance matrix, m2

G = posterior resolution matrix or Hessian, m−2

d = neighboring conditioning
h = nonnegative layer thickness, m
H = total thickness at trace, m
L = Cholesky factor of covariance matrix, m
N(µ,σ2) = normal distribution function with mean µ and

variance σ2

N−1(µ,σ2;r) = inverse normal distribution function with mean
µ and variance σ2, at a cumulative probability of
r

p = probability density
P = probability
r = random number
Rx = covariance range parameter in direction x, m

s = scaling factor
t = Gaussian proxy for h, may be negative, m
u = auxiliary variable correlated to layer state
U = uniform distribution function
T = Tk = 1

2 (sgn(tk)+1)
W = computational work, flops
x,y,z = coordinates, m
X ,Y,Z = grid extents, m
α = Metropolis-Hastings transition probability
γ = semivariogram model
∆ = separation vector for variogram models, m
φ = layer porosity
Φ̄ = trace average porosity
κ = number of layers at a trace with tk > 0
π = posterior
σ2 = variance

Indices and Special Subscripts
D = number of nonzero conditioning data
k = indices over layers
K = total number of layers
` = indices over traces
L = total number of traces
p = prior
λ,Λ = zero thickness data index and count

Diacritical Marks
·̄ = mean
·′ = proposed point, may become new point
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Appendix—Zero Thickness Conditioning Data
In this paper, the untruncated Gaussian proxy t is kriged, not the
actual thickness h. At simulated traces, t is computed and stored,
and only converted to h for output. Conditioning data present more
of a challenge. If we observe some layer k on trace ` has h`k =
0, the value of t`k is indeterminate; we only know t`k ≤ 0. The
conditioning data might be decorrelated if we used a simple but
reasonable draw such as

tk = N−1
(

t̄k,σ
2
tk;r
)

,r ∼U [0,P(hk = 0)], . . . . . . . . . (A1)

where P(hk = 0) is given by Eq. 1, N is normal distribution
function, and U is the uniform distribution function. Instead, we
model the correlation as follows, with a loop over all layers.

• Find all zero conditioning data in this layer, k; the list of the
locations of zero data is indexed over λk ∈ {0 . . .Λk}. The positive
conditioning data in layer k are indexed by d ∈ {0 . . .Dk}.

• Initialize all Λk zero thickness observations in layer k with
random draws, using Eq. A1.

• Visit each point λ, forming a kriging system of size Dk +
Λk−1, composed of all points in this layer except the current point.
Compute the mean and variance, and draw r ∼U [0,P(hk = 0)]; in
the first iteration, the kriging weights and variances are stored for
reuse. P(hk = 0) is computed using the new mean and standard
deviation of tk. The new simulated value tk is the inverse of
N(t̄k,σ2

tk) at cumulative probability r.
• Generate a chain and store.
• Repeat ∀k ∈ {1 . . .K}

The stored chains can be used at the beginning in later simulations
of layer thickness. Before simulating any new points, sets of the
zero-thickness conditioning data are drawn from the stored chain.
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